WI ND S

of tie

NORTHERN HEMISPHERE.

BY

JAMES H. COFFIN, A. M.,
 PROFESSOR of mathematics and natural philosophy in
 lafayette college, aston, pennsylvania.

Accepted for Publication, November, 1850.

Revised, November, 1852.

COMMISSION

TO WHICH THIS PAPER HAS BEEN REFERRED

Prof. W. B. Rogrrs.
Prof. E. Lоомis.
Joseph Hrnry,
Secretary S. I.

CONTENTS.

Series B.-Continuerl. page
West Indies and South America 71
Bermuda Islands 72
North Atlantic 73
Straits of Gibraltar 82
Azores 83
Madeira and Canary Islands 83
Great Britain and Ireland 84
Denmark, Norway, Sweden, and Russia 86
Prussia and Austria 87
Germany 89
Holland and Belgium 95
France 96
Spain and Portugal 100
Italy 100
Switzerland 101
Turkey and the Mediterranean Sea 102
Georgia 104
Persia - 104
Siberia 105
China 107
Hindoostan 108
Africa 108
Pacific and Indian Oceans 109
Series C.-Mean Direction of Winds 110-141
Sec. I. America, Fast of Longitude 87° from Greenwich 110
Sec. II. Atlantic Ocean and its Islands 118
Sec. III. Europe and Africa 119
Sec. IV. Asia and the Pacific Ocean 124
Sec. V. America, West of Longitude 87° from Greenwich 124
Supplement 127
Deductions and Remarks 132
Series D.-Monthly Directions and Deflections 142-172
Arctic Regions of North America 143
Northwest British America 144
Iceland and Greenland 145
Labrador 146
Hudson's Bay Territory 146
Russian America 146
Newfoundland 146
United States and Canada.-Lat. 45° to 50° 147
New England States 147
New York State 148
New Jersey and Pennsylvania 148
Delaware, Maryland, and Eastern Virginia 149
North Carolina and Tennessee 150
United States.-Lat. 34° to 35° 150
Do. Lat. 30° to 34° 151
Do. Lat. 29° to 30° 152
Florida 152
West Indies 153
Ohio 153
Series D.-Continued. page
Michigan, Wiscensin, and Iowa 154
Indiana, Illinois, Kentueky, and Missouri 154
Western Territories of the United States 155
Bermudas 155
North Atlantic Ocean 156
Northern Russia, Sweden, and Prussia 160
Germany 160
Holland and Belgium 161
Great Britain 161
France, Switzerland, and Italy 162
Austria and Southern Russia 163
Turkey, Asia Minor, Armenia, Syria, and Georgia 163
Palestine, Mesopotamia, and Persia 164
Hindoostan 165
Siberia 165
China 166
Africa 166
Islands of the Pacific Ocean 166
Madagascar 167
Deductions and Remarks 168
Theoretical Considerations 169
Series E.-Force and Velocity of Winds 173-182
Smithsonian Scale 173
Toronto, Canada 173
Boothia Felix 174
Cambridge, Massachusetts 174
North Carolina 174
Hudson, Ohio 174
Bermuda Islands 174
Southern Maine, New Hampshire, and Vermont 175
Massachusetts, Rhode Island, and Connecticut 176
Amberst and Williams Colleges, Massachusetts 176
New York State 176
New Jersey and Pennsylvania 177
Girard College, Pennsylvania 177
Delaware, Maryland, and Eastern Virginia 178
Georgia, Alabama, Mississippi, and Northern Florida 178
Ohio, Kentucky, and Tennessee 179
Indiana, Illinois, Michigan, Wisconsin, and Iowa 180
West Indies and South America 180
Sturbington, England 180
Inchkeith and Calton Hill, Scotland 181
Devonport, England 181
Greenwich, do. 182
Oporto, Portugal 182
Tripoli, Barbary 182
General Summary 182
Series F.-Effects of Force and Velocity 183-186
Resultants compared 184
Differences of do 185
Deductions and Remarks 185

INTRODUCTION.

This memoir is an expansion of a report on the winds of North America and the North Atlantic Ocean, prepared in obedience to a request of the American Association for the Advancement of Science, and read at its meeting in Philadelphia in 1848. Although the northern portion of the eastern continent did not properly fall within the limits of the report, yet it was thought that it would be more complete if it could be made to include the entire northern hemisphere; and this has been done partly through the aid of American missionaries and others residing abroad, who kindly sent manuscript records of their observations, and partly through meteorological registers published in different European journals, \&c. In this way, I have been enabled to obtain a large amount of material from Europe, Asia, Northern and Western Africa, and several islands in the Atlantic and Pacific Oceans. With a view to obtain more full data at sea, I made arrangements, through the aid of a friend in New York, to procure from shipowners in that city the loan of a number of log-books kept during voyages in the Atlantic and elsewhere. From these, and other sources, I had collected records of observations at sea for periods amounting in the aggregate to between six and seven years, when, learning that Lieut. Maury, of the National Observatory, was successfully prosecuting the same work under far greater advantages, I relinquished that field, and confined myself to observations on land.

An interval of several years which has elapsed since the memoir was first presented to the Smithsonian Institution, while it may have rendered some parts less valuable, has enabled me to improve others by the addition of new matter derived from the Smithsonian operations, and those of the National Observatory. Among the materials obtained from the latter may be mentioned, a collection of observations at sea, amounting in the aggregate to a period of more than one hundred and twenty years. I may also mention, as an important addition, the discovery of systems of deflecting forces on both sides of the Atlantic.

My acknowledgments are due to the following gentlemen for the aid they have rendered me in obtaining the data necessary for the investigation, either by contributing their own observations, or affording facilities for procuring those of others:-

Duncan Finlayson, Resident Agent of Hudson's Bay Company, British Amer. Donald Ross, Norway House, Hudson's Bay Territory.
John Swanston, Michipicoton, L. Sup. Joseph Templeman, St. John's, Newf.
Hon. J. S. McCord, Montreal, Canada.
Capt. J. H. Lefroy, Gov'ment Observatory, Toronto, Canada.
Dr. Jedediah Herrick, Hampden, Me.
Dr. J. M. Batchelder, Saco, Me.
S. Rodyan, New Bedford, Mass.

Prof. E. S. Snell, Amherst College, Mass.
Almon Brainard, Greenfield, Mass.
Dr. Ovid Plumb, Salisbury, Conn.
James Quintard, Norwalk, Conn.
J. L. Hendrick, Litchfield, Conn.
E. C. Herrick, New Haven, Conn.

Prof. B. Silliman, Yale College, Conn.
Prof. Denison Olmsted, Yale Coll., Conn.
Prof. A. W. Smith, Wesleyan University, Conn.
Dr. T. Romeyn Beck, Albany, N. Y.
Gideon Hawley, Albany, N. Y.
W. C. Redfield, New York City.

Gerard Hallock, New York City.
Prof. Elias Loomis, N. Y. University.
Joseph Delafield, New York City.
Dr. A. F. Ewing, Trenton, N. J.
George Mowry, Somerset, Pa.
Jacob Mechling, Butler, Pa.
Dr. J. T. Ducatel, Baltimore, Md.
Prof. Joseph Henry, Smithsonian Institution, Washington, D. C.
Lieut. M. F. Maury, National Observatory, Washington, D. C.

Prof. Alex. D. Bache, Washington, D. C. Col. J. J. Abert, Chief of Topographical Bureau, Washington, D. C.
James P. Espy, Washington, D. C.
Dr. Thomas Lawson, Surgeon-General, Washington, D. C.
Prof. James Phillips, Univ. of N. C.
Prof. C. F. McCay, Franklin College, Ga.
Dr. John F. Posey, Savannah, Ga.
E. B. Jennings, Tuskegee, Ala.

Dr. Henry Tooley, Natchez, Miss.
Prof. James Hamilton, University of Nashville, Tenn.
Prof. I. W. Andrews, Marietta Coll., 0. Dr. Boswell Marsh, Steubenville, 0.
Rev. Z. K. Hawley, Knoxville, Ill.
Matthew Coffin, Otsego, Mich.
W. A. Raymond, Detroit, Mich.

Isidor Loewenthal, Posen, Poland.
Rev. H. G. O. Dwight, Constantinople, Turkey.
Rev. N. Benjamin, Smyrna, Asia Minor. Dr. Azariah Smith, Erzeroom, Asia Min. Rev. P. O. Powers, Broosa, Asia Minor.
Rev. S. H. Calhoun, Mount Lebanon, Syria.
Dr. H. A. De Forest, Beirut, Lebanon, Syria.
Rev. John F. Lanneau, Jerusalem, Palestine.
Rev. Justin Perkins, Ooroomiah, Persia. Wm. T. Thompson, Secretary of British Embassy, Tehran, Persia.
Joseph Reed, Tehran, Persia.
George A. Stevens, Tabreez, Persia.
Solon Albee, Langdon, N. H.

I have also made free use of the published papers of Prof. Dove, and others, whenever I could obtain them.

W I N D S

OF THE
NORTHERN HEMISPHERE.

The design of this memoir is to answer, as far as practicable, the following questions, viz:-

1. What is the mean direction in which the lower strata of the air move over different portions of the Northern Hemisphere; including in the term lower strata all that part of the atmosphere on which direct observations can be made, whether by the motion of the clouds, or by means of a vane?
2. What is the rate of progress in this mean direction, as compared with the total distance travelled by the wind?
3. What modifications does this mean direction, and rate of progress, undergo in the different months of the year?
4. What is the direction and amount of the deflecting forces that cause these modifications?
5. What is the average relative velocity of winds from the several points of compass?
6. How will the introduction or omission of this latter element affect the answers to the preceding questions?

The data which I use for elucidating the questions here proposed, consist of series of observations on winds taken at nearly 600 different stations on land, and during numerous voyages at sea, extending from the equator nearly to the parallel of 83° of latitude (the most northerly point ever reached by man), and embracing an aggregate period of over 2,800 years. Were these stations distributed uniformly over the entire Northern Hemisphere, we should have about one in every 418 miles square, which would afford us tolerably fair data for the investigation. But, unfortunately, this is not the case, as may be seen by inspecting Plate I., which shows by dots their position. In the United States, and in several of the countries of Europe, the materials are abundant, and, through the operations of the National Observatory, under the direction of Lieut. Maury, we have very satis-
factory means for studying the winds of the North Atlantic, from the equator to the parallel of 55° of latitude. Over the remaining four-fifths of the Northern Hemisphere, the data are more deficient, though not entirely wanting. It was apprehended that they must be very meagre in the high northern latitudes, dependent as we are for them entirely upon the reports of the different arctic expeditions, and considering the difficulty of taking meteorological observations through the entire year in those frozen and inhospitable regions. Yet they were found to be more satisfactory than was anticipated; and I have been able to embody in this memoir the results of $38 \frac{1}{2}$ years' observations, taken at twenty different stations north of lat. 60°, nine of which are within the Polar Circle. Indeed, so far as information is to be obtained from regular and published series of observations, Plate I. shows that we are better informed in regard to the winds about the north pole than on the Pacific Ocean; although the latter is constantly traversed by ships, and the former never, unless for the purpose of scientific research. ${ }^{1}$
There is a considerable gap in the interior of British America, which would have been still greater, but for the politeness of several of the officers of the Hudson's Bay Company, who kindly contributed collections of observations taken at their respective stations.

In Asia, the stations are few in number, compared with the vast extent of territory; and yet they are as numerous, perhaps, as could reasonably be expected. In the southwestern part, there are twelve places from which I have obtained observations, chiefly through the kindness of American missionaries residing there. Kupffer's voluminous collections, ${ }^{2}$ published by the Russian government, also afforded me a number in Siberia and the Ural Mountains. Throughout the wide area of the Chinese empire, embracing the whole of Central and Southeastern Asia, we have records only from Pekin, ${ }^{3}$ nor is there, so far as I know, a prospect of obtaining others. Some observations that I was encouraged to expect from the southern part of China Proper, have not yet come to hand. In Southern Asia, the

[^0]only stations from which I have been able to obtain observations, are the few marked on Plate I. in Hindoostan, though other collections, taken at Aden, in Arabia, at Singapore, and at several other stations in Hindoostan, are known to exist.

Our information in regard to the winds of Africa, is confined to a few stations on the northern and western borders, embracing in the aggregate a period of only eleven months. I am aware of no series of observations ever taken in the interior, except for three months only by the Niger expedition, and that still remains unpublished, I believe, in the possession of the Royal Society of London. The series taken by Mr. Aimé, at Algiers, and by Mr. Lambert, at Cairo, must be valuable, but I have not been able to obtain them.

There is reason to believe that most of the observations which furm the basis of this memoir, were taken with such accuracy that reliance may be safely placed on the results, though there is, doubtless, considerable difference among them in this respect. At nearly every station, the direction of the wind was recorded for at least eight points of compass; at many, for sixteen points or more, together with estimates of the force; and at several, ${ }^{1}$ either the direction, or force, or both, were accurately measured and recorded by means of self-registering anemometers.

The method of applying these data to determine the mean direction of the wind consists, as has already been remarked, not simply in finding from what point of compass it has blown most frequently, and rejecting all the rest, but in resolving the traverse of all the different courses. A ship at sea, having sailed on different tacks, would find itself sadly out of its reckoning, if it were to take into account merely the tack upon which it had sailed most frequently, or for the longest time. The same would be the case if a balloon were set afloat in the air, and we wished to know its course and distance after a given time, which is what is intended by the terms mean direction and rate of progress, or percentage of resultant, as used in this memoir. May not the imperfect manner in which the subject has generally been studied, account for the belief so commonly entertained, that the winds in the temperate zones are subject to no fixed laws; the prevailing direction being so dependent upon the local features of the surrounding country, as often to furnish next to no indication of the direction in which the air as a whole moves? In any well-defined valley of considerable extent, it is a familiar fact that the winds incline to take the direction of the valley, marked examples of which the reader may see in the stations on Hudson River, in the State of New York, as exhibited in Plate III. Half the winds, or more, follow the course of the river, either up or down, and yet the mean direction of the whole is nearly at right angles to it.

The questions already enumerated will serve as a general index to the plan of the work. It consists mainly of tabular statements, the different series being designated by the capital letters, A, B, C, \&c.

[^1]Series A, contains a list of the stations, or places of observation, with their latitudes and longitudes from Greenwich, and the names of the observers as far as known. ${ }^{1}$

Series B, contains abstracts of the observations on the direction of the wind at the different stations. With a view to greater condensation, months of the same name in different years are often united, so as to make but a single table of monthly abstracts, even though the observations extend through a number of years. The wind-roses, in the Plate of this series, exhibit to the eye the relative predominance of the different winds, the width of the shading at the different points of compass being proportional to the time during which the winds prevailed from those points.

Series C, shows the mean direction and rate of progress of the wind at the different stations, computed in the manner already described, from the data contained in series B. Besides the general results for the whole time, there is given also, at a few places, the separate results for each year. I undertook, at first, to do the same for all the stations, but the labor was so great that it became questionable whether the results would be worth the cost, and the idea was relinquished. Accompanying the tabular statements is a series of maps, on which the mean direction and rate of progress of the wind at the different stations is exhibited to the eye by means of straight arrows. The length of the arrow, exclusive of the point, shows the ratio of the progressive motion of the wind to the whole distance travelled, the unit being one inch. That is to say, if the wind were to blow uniformly in one direction, it would be represented by an arrow one inch long; if the progressive motion were fifty miles, for every hundred miles travelled, the length of the arrow would be half an inch, and so on.

Series D , shows the deflections of the wind from its mean annual course in the different months of the year, together with the direction and amount of the forces which produce these deflections. For a more full description of the process employed, the reader is referred to the Introduction to this series. The tabular statements are illustrated by two series of plates, one showing the monthly direction of the wind, and the other the deflecting forces. The former are shown by means of curves, divided into 12 parts, each part showing the mean path of the wind for one month, and, consequently, the whole the annual curve. The latter are represented by means of arrows, twelve for each station, corresponding to the months of the year. The direction and length of the arrow for any given month shows the direction and amount of the deflecting force in that month, the scale being the same as in the plates following Series C.

Series E, shows the average relative force, or velocity, or both, of winds from the several points of compass, and is accompanied by wind-roses exhibiting the same facts to the eye, the width of the shading at each point of compass being proportional to the average velocity of the wind at that point.

[^2]Series F is deduced from Series E, and shows the effect of combining the element of force with that of time, in computing the mean direction of the wind. A more full and particular description of the process is given in the Introduction to the series, further on.

That no errors have been committed in reducing so great a mass of observations, and making the numerous calculations growing out of them, is more than I dare to assert. I can only hope that they are not so serious as materially to affect the general results.

Coogle

SERIES A .
List of places of observation, with their latitudes and longitudes from Greenwich, the length of time embraced, and the name of the obscrver.

Name of Station.	Latitude.	Longitude.	Time.	Authority.
1. Within the Arctic Circle.				
Spitzbergen and vicinity	$79^{\circ} 55^{\prime}$	$16^{\circ} 49^{\prime} \mathrm{E}$.	5 months	Parry.
Baffin's Bay . . .	-		13 do.	Parry and Ross.
Melville Island and vicinity	74	11048 W.	1 year	Parry.
Port Bowen and vicinity	7314	8855	1 do.	Do.
Igloolik and vicinity . ${ }^{\text {a }}$	$69 \quad 21$	8142	1 do.	Do.
Winter Island and vicinity ${ }^{1}$	$66 \quad 11$	8310	1 do.	Do.
Felix Harbor . .	70	9153	1 do.	Jas. Ross.
Sheriff's Harbor .	70	9152	1 do.	Do.
Victoria Harbor .	$70 \quad 9$	9134	6 months	Do.
2. Iceland and Greenland.				
Eyafiord, Iceland	$65^{\circ} 50^{\prime}$	$20^{\circ} 0^{\prime} \mathrm{W}$.	2 years	Van Scheels.
Reikiavik, do. . .	$64 \quad 40$	220	7 months	Gladstone and Park.
Now Herrnhutt, Greenland .	$64 \quad 50$	$49 \quad 10$	1 year	
Frederichthal, do. .	601	$44 \quad 45$	7 months	
3. British and Russian America.				
Fort Enterprise . . .		$113^{\circ} 6^{\prime} \mathrm{W}$.	1 year	Franklin.
Great Bear Lake . .	$65 \quad 11$	$123 \quad 7$	20 months	Do.
Great Slave Lake	$62 \quad 46$	1091	8 do.	Back.
Nain, Labrador . - .	560	610	$1 \text { year }$	
Norway House, Hudson's Bay Ter	550	980	$7 \mathrm{do}$.	Donald Ross.
Michipicoten, Lake Superior	4756	8450	1 do.	Swanston.
St. Jolun's, Newfoundland .	$47 \quad 35$	5238	4 do.	Templeman.
Quebec, Canada . -	46	$\begin{array}{ll}71 & 16 \\ 73 & \end{array}$	6 do.	Watt and others.
Montreal, do. . -	$\begin{array}{ll}45 & 31 \\ 43 & 38\end{array}$	73	3 do.	McCord.
Toronto, do.	43	79 22	5 do.	Lefroy.
Wilberforce, do.	$43 \quad 20$	8136	1 month	
Windsor, Nova Scotia	$\begin{array}{ll}44 & 57 \\ 57 & 3\end{array}$	$\begin{array}{r}64 \\ \hline 135\end{array}$	1 year	
Sitka, Russian America	$\begin{array}{ll}57 & 3 \\ 53\end{array}$	$135 \quad 25$	1 do.	Homann and Ivanoff.
Iluluk, Alcutian Islands	530	16746	13 do.	Sproull.
4. Maine.				
Fort Kent .	$47^{\circ} 15^{\prime}$	$68^{\circ} 46^{\prime} \mathrm{W}$.		Surg. U. S. Army.
Fort Fairfield	46	$\begin{array}{ll}67 & 59\end{array}$	1 do.	Do.
Hancock Barracks	$46 \quad 10$	6750	14 years	Sprague.
Addison	44	$67 \quad 34$	5 months	Wafs.
Bangor .	44	6847	6 do.	Young.
Biddeford	43	$70 \quad 26$	1 year	Garland.
Bremen	44	$68 \quad 44$	3 months	Blake.
Bath	4355	6945	11 years	Hayden.
Eastport	44	$67 \quad 4$	12 do.	Surg. U. S. Army.
Gardiner	4410	6948	4 months	Gardiner.
Hampden	$44 \quad 42$	6856	$3{ }^{3}$ y years	Herrick.
Machias	44.40	$67 \quad 24$	1 month	Stearns.

[^3]

Name of Station.		Latitude.	Longitude.	Time.	Authority.
9. Pennsylvania.-Continued.					
Bellefonte .	- •	$40^{\circ} 55^{\prime}$	$77^{\circ} 49^{\prime} \mathrm{W}$.	11 months	Harris.
Bedford	. .	401	$78 \quad 30$	1 year	Brown.
Bethlehem .	. .	4033	$75 \quad 28$	2 months	Kummer.
Cochranville	.	3952	760	2 do.	Linton.
Coudersport	- .	4145	7819	5 do.	S. Ross.
Carlisle .	. .	4012	7712	23 years	Allen and others.
Canonsburg	. .	41	80	3 months	Campbell.
Chambersburg	. .	3956	7743	1 month	Thompson.
Danville .	.	4058	76	2 months	Frick.
Easton:	. .	$40 \quad 43$	7516	$3 \pm$ years	Elliot, Green, and others.
Ebensburg .	. .	$40 \quad 31$	7845	1 year	Lewis.
Erie -	- .	427	8010	3 months	Park and Reid.
Franklin		4125	7953	1 ycar	Connelly.
Fort Miflin	- .	3951	7512	2 years	Surg. U. S. Army.
Gettysburg	. .	3951	7715	15 year	Jacobs.
Girard College	. .	3958	7511	5 years	Bache.
Green Hill	. .	4048	7830	1 month	Wright.
Germantown	. .	$40 \quad 3$	7510	3 months	Weister.
Harrisburg	- .	4016	$76 \quad 50$	1 year	Heisley.
Huntingdon	.	4031	781	1 do.	Miller.
Haverford .	. .	$40 \quad 0$	$75 \quad 20$	10 months	
Indiana	. .	4040	7910	9 do.	White.
Lamar	. .	412	$77 \quad 43$	1 month	Matthias.
Lancaster		403	$76 \quad 21$	2 years	Atlee.
Lewistown	. .	$40 \quad 35$	$\begin{array}{ll}77 & 37\end{array}$	5 months	Culbertson.
Meadville	. .	$41 \quad 39$	80	1 year	Limber and Dick.
Mifflintown	. .	$40 \quad 32$	77	21 months	Kinkead.
Mercersburg	. .	3950	7756	4 do.	Green.
Milford .		4118	7450	1 month	Bull.
Newtown	$\cdots \quad$.	$40 \quad 14$	7457	14 year	Parsons.
Norristown		407	7518	5 months	Coison.
Northumberland -	- •	$40 \quad 55$	7649	$1 \frac{5}{6}$ year	Huston.
Philadelphia	. .	3957	7510	$5 \frac{1}{8}$ years	Hamilton and others.
Pottsville .		4041	769	5 months	Porter.
Port Carbon	. .	$40 \quad 43$	766	11 do.	P. C. Lyceum.
Pittsburg	. .	$40 \quad 32$	$80 \quad 2$	1 year	Bakewell and others.
Reading .	- •	4019	$75 \quad 55$	10 months	Egelman.
Rose Cottage	. .	417	79	3 do.	Gaskell.
Silver Lake		4155	761	14 year	Rose.
Somerset .	. .	401	795	2 years	Mowry.
Stroudsburg		$40 \quad 58$	$75 \quad 16$	10 months	Stokes.
Smithport .		4154	78	1 year	Atkins and Chadwick.
Uniontown.		3954	7942	11 months	Weethee.
Warren .		4151	7914	8 do.	Brown and King.
West Chester		3959	$75 \quad 35$	11 months	Jeffries.
West Greenfield					Campbell.
York . .		3958	7640	3 do.	Mason.
Wilkesbarre		$41 \quad 14$	$75 \quad 56$	2 do.	Dennis and Maxwell.
10. Delaware, Maryland, and Virginia.					
Alexandria, Va. .	- •	$38^{\circ} 46^{\prime}$	$77^{\circ} 1^{\prime} \mathrm{W}$.	1 month	Mountford.
Annapolis, Md. .	. .	$38 \quad 58$	$76 \quad 27$	5 years	Surg. U. S. Army.
Baltimore, Md.		3917	$\begin{array}{ll}76 & 37\end{array}$	1 year	Maryland Academy.
Bellona Arsenal, Va.	. .	3740	77	1 do.	Surg. U. S. Army.
Emmetsburg, Md.		3941	77	3 months	Giraud.
Fort McHenry, Md. .	- .	3917	76	12 years	Surg. U. S. Army.
Fort Washington, Md.	. .	3841	$76 \quad 58$	$2 \text { do. }$	Do.

Name of Station.		Latitude.	Longitude.	Time.	Authority.
13. Tennessee and Kentuoky.					
Greenville, Tenn.	- .	$36^{\circ} 8^{\prime}$	$82^{\circ} 46^{\prime}$ W.	3 months	
Knoxville, Tenn.	- .	$35 \quad 59$	8354	8 do.	Garvin.
Mt. Atlas, Tenn.	- .	360	8820	6 do.	Travis.
Nashville, Tenn. .	.	3610	8649	6 years	Hamilton.
Danville, Ky. .	-	3740	8440	5 months	Beatty.
Louisville, Ky. .	-	383	8530	2 do.	Fleming and Peter.
New Concord, Ky.		$36 \quad 39$	883	1 month	Williams.
Paris, Ky. .	-	3816	846	2 months	Lyle.
Springdale, Ky. .	.	3810	8540	2 do.	
St. Mary's College, Ky.	.	$37 \quad 33$	8510	7 do.	Thebaud.
14. Ohio.					
Ashtabula		$41^{\circ} 55^{\prime}$	$80^{\circ} 50^{\prime} \mathrm{W}$.	5 months	
Cambridge .	.	405	8137	1 month	Brown.
Cincinnati .		396	$84 \quad 27$	7 months	Ray and Williams.
Columbus		3957	83	8 do.	Kennedy.
Conneaut	- .	420	8034	1 month	Dibble.
Chillicothe	.	$39 \quad 24$	8256	$1 \frac{1}{3}$ year	Davis and Williams.
Dayton	.	3944	8411	4 months	Williams.
Granville College	-	$40 \quad 4$	8234	5 do.	Carter.
Hudson . .		41	8124	7 years	Loomis.
Lancaster		3946	8236	5 months	Kreider.
Lebanon		3930	$84 \quad 7$	13 do.	Hatfield.
Marietta		3927	8129	1 year	Hildreth.
New Athens	.	4110	81	7 months	Mason.
Ravenna		4112	8116	1 month	
Sandusky.		41	8242	9 months	Morton.
Steubenville		$40 \quad 25$	$80 \quad 42$	14 years	Marsh.
Zanesville .	.	400	821	11 months	Peters.
15. Indiana and Illinois.					
Brockville, Ia.	- -	$4^{41^{\circ}} 42^{\prime}$	$84^{\circ} 40^{\prime}$.W.	3 years	Coffin.
Brookville, Ia. .	- .	$\begin{array}{ll}39 & 25\end{array}$	8454	4 months	Hayward.
Greencastle, Ia. .	- .	3939	8646	3 do.	Downey.
Greensburg, Ia. .		3920	$85 \quad 28$	3 do.	Lathrop.
Indianapolis, Ia.	- .	3948	8610	3 do.	Wheeler.
Rensselaer, Ia.	.	4057	879	1 month	Luther.
Winnamac, Ia.	- .	41	86	3 months	Do.
Chicago, Ill.	- .	420	8735	44 years	Wilson and others.
Joliet, Ill. .	- .	41	8810	6 months	Brownson.
Macomb, Ill. -	- .	4030	9030	3 do.	Richards.
Jacksonville, Ill.		3948	9019	9 do.	Hawley.
Peoria, Ill. .	-	$40 \quad 35$	8936	1 month	Washburn.
Rock Island .	-	41	9033	8 years	Surg. U. S. Army.
Upper Alton, Ill.		$\begin{array}{ll}38 & 57\end{array}$	90	2 months	Sarg. U. S. Army.
Shawneetown, Ill.	- .	3742	$88 \quad 12$	2 do.	Roe.
16. Michigan, Wisconsin, and Iowa.					
Ann Arbor, Mich.		$42^{\circ} 15^{\prime}$	$83^{\circ} 43^{\prime} \mathrm{W}$.		
Dearbornville, Mich.	.	$42 \quad 20$	831	1 year	Surg. U. S. Army.
Detroit, Mich. .	-	$42 \quad 24$	8258	3 years	Duffield.
Detroit Barracks, Mich.		4219	8258	3 do.	Surg. U. S. Army.
Fort Gratiot, Mich. -		$42 \quad 56$	8218	9 do.	Do.

Name of Station.	Latitude.	Longitude.	Time.	Authority.
16. Miohigan, Wisconsin, and Iowa.-Continued.				
Mackinac, Mich. .	$45^{\circ} 51^{\prime}$	$85^{\circ} 5^{\prime} \mathrm{W}$.	8 years	Surg. U. S. Army.
Fort Winnebago, Wis.	$43 \quad 35$	8920	10 do.	Do.
Green Bay, Wis.	$44 \quad 40$	870	18 do.	Do.
Fort Brady, Mich. .	46	8443	18 do.	Do.
Prairie du Chien, Wis.	43 3	9053	14 do.	Do.
Bloomington, Iowa .	$41 \quad 26$	$91 \quad 2$	5 do.	Parvin.
Iowa City, Iowa .	4140	91	2 months	Murray.
Fort Atkinson, Iowa -	430	9110	2 years	Surg. U. S. Army.
Fort Snelling, Iowa -	$44 \quad 53$	938	20 do.	Do.
Turkey River, Iowa. -	43 6	920	1 month	
Presque Isle, Mich. . -	$45 \quad 18$	8330	3 months	Woolsey.
Source of the Des Moines, Iowa	443	961		Nicollet.
Lac qui Parle, Lowa . .	45	9530	$2 \text { do. }$	Williamson.
East Troy, Wis. .	$42 \quad 50$	8830	1 month	Jennings.
17. Missouri, Arkansas, and Western Territories.				
St. Louis, Mo.	$38^{\circ} 37^{\prime}$	$90^{\circ} 16^{\prime}$ W.	10 years	Surg. U. S. Army.
Washington, Ark.	3343	$93 \quad 37$	5 months	Slaughter.
Fort Wayne, Ark.	$36 \quad 4$	9438	2 years	Surg. U. S. Army.
Little Rock, Ark.	$34 \quad 40$	9212	2 do.	Do. and Goulding.
Council Bluff .	41	96	5 do.	Surg. U. S. Army.
Fort Gibson .	3547	9510	15 do.	De Camp and others.
Fort Leavenworth	$39 \quad 20$	9511	11 do.	Surg. U. S. Army.
Fort Smith	$35 \quad 30$	9431	3 do.	Do.
Fort Towson	33133	951	10 do.	Do.
Fort Laramie .	$42 \quad 12$	10448		Fremont.
Fort Vancouver .	45	$122 \quad 37$	11 year	C. Hall and others.
Fremont's Town .			1t do.	Fremont.
18. Florida, Texas, California, and Mexioo.				
St. Augustine, Fa.	$29^{\circ} 48^{\prime}$	$81^{\circ} 35^{\prime} \mathrm{W}$.		Rodiman and others.
Tampa Bay, Fa. .	$27 \quad 57$	8235	12 do.	Bunce and others.
Pensacola, Fa.	$30 \quad 24$	8710	8 do.	Surg. U. S. Army.
Key West, Fa. .	$24 \quad 32$	8147	7 do.	Whitehead and others.
Fort King, Fa. .	298	8212	5 do.	Surg. U. S. Army.
Cedar Keys, Fa. . -	298	839	1 year	Do.
Tortugas Islands, Fa.	$24 \quad 37$	830	1 do .	Thompson.
Indian Key, Fa.	$24 \quad 54$	8043	1 do.	Howe.
Carysford Reef, Fa.	$25 \quad 2$	$80 \quad 15$	1 do.	Whalton.
Cape Florida, Fa.	$25 \quad 47$	7958	1 do.	Dubose.
Galveston, Texas	2924	954	1 month	
Mazatlan, Mexico	160	9520	1) do.	
Yucatan	21	83		Purdy.
Monterey, California .	3640	12140	11 days	
19. West Indies and South America.				
Matanzas, Cuba .	$23^{\circ} 3^{\prime}$	$81^{\circ} 30^{\prime} \mathrm{W}$.		Mallory.
Ponce, Porto Rico	$17 \quad 57$	6640	1 month	
Turk's Island .	$21 \quad 29$	715	1 do.	Arthur.
Barbadoes .	135	5943	9 months	Dawson.
Chagres, New Grenada	$9 \quad 10$	$80 \quad 17$	1 month	Cobb.
Porto Cabello, Venezuela .	$10 \quad 28$	$68 \quad 17$	3 months	Sitchfield.

Name of Station.	Latitude.	Longitude.	Time.	Authority.
20. Atlantic Ocean and its Islands.				
Hamilton, Bermudas			31 years	Reid.
Ireland Isle, Bermudas			4 months	
Canary Islands . .	$28^{\circ} 43^{\prime}$	$17^{\circ} 46^{\prime} \mathrm{W}$.	1 month	
Funchal, Madeira	$32 \quad 38$	17.6	3 years	
Fayal, Azores .	$38 \quad 32$	2840	2 months	Hunt.
St. Michael's, Azores	3740	$25 \quad 50$	2 do.	Do.
Terceira, Azores . .	3840	2750	2 do.	Do.
Graciosa, Azores .	3912	2758	12 days	Do.
St. Mary's, Azores .	37 0	2459	$10 \text { do. }$	
On board ship .			115 years	Hamilton, Quintard \& others.
21. Great Britain and Ireland.				
Aberavon, Wales	$51^{\circ} 35^{\prime}$	$3^{\circ} 48^{\prime} \mathrm{W}$.	3 months	
Bronxholm, Scotland .	$55 \quad 27$	30	10 years	
Elgin, Scotland . .	$57 \quad 38$	316	3 do.	
Clunie Manse, Scotland	$56 \quad 25$	336	4 do.	
Inchkeith, Scotland .	56	$3 \quad 9$	10 do.	
Banff Castle, Scotland	$57 \quad 35$	245	1 year	
Calton Hill, ${ }^{1}$ Scotland			10 years	
Castle Toward, Scotland			2 do.	
Kinfaun's Castle, Scotland	$56 \quad 55$	$\begin{array}{ll}3 & 30\end{array}$	12 do.	
Cheltenham, Eng. -	$\begin{array}{ll}51 & 55 \\ 52 & 38\end{array}$	2 L	1 year	
Alderly Rectory, Eng.	$\begin{array}{ll}52 & 38 \\ 52 & 20\end{array}$	0 52 0	1 do.	
Thetford, Eng. . -	$\begin{array}{ll}52 & 20 \\ 51 & 31\end{array}$	0 40 0 7	1 do.	
London, Eng. - .	$\begin{array}{ll}51 & 31 \\ 53 & 20\end{array}$	$0{ }^{0} 70$ W.	13 years ${ }^{\circ}$	Howard.
Liverpool, Eng. -	$53-22$	30	7 do.	Abraham.
Greenwich, Eng. ${ }^{\text {c }}$	$\begin{array}{ll}51 & 29 \\ 51 & 38\end{array}$	$\begin{array}{rrr}0 & 0 \\ 0 & 50\end{array}$	11 do.	Royal Society.
High Wycombe, Eng.	51	050	1 year	
Carlisle, Eng. .	$55 \quad 1$	$\begin{array}{ll}3 & 13 \\ 2\end{array}$	1 do.	
Keswick, Eng. -	5444	246	5 years	
Southwick, Eng.			11 do.	
Kendal, Eng. -	5418	246	5 do. ${ }^{\text {a }}$	
Mansfield Woodhouse, Eng.	538	11	10 do.	
Bristol, Eng.	5127	236	2 do.	
Delphen, Eng. .	$52 \quad 0$	07 E .	1 year	
Devonport, Eng.	$50 \quad 23$	49 W.	3 years	
Sturbington, Eng.	near	Portsmouth.	1 year	
Sidmouth, Eng. .	5041	313 W.	2 years	
Derby, Eng. -	5258	130	2 do.	
Gosport, Eng. .	5048	16	5 do.	
Lancaster, Eng. -	$53 \quad 29$	246	6 do.	
Penzance, Eng. -	$50 \quad 5$	$5 \quad 28$	5 do.	
Helston, Eng. -	$50 \quad 7$	$5 \quad 15$	2 do.	
Manchester, Eng.	$53 \quad 25$	210	4 do.	
Bushy Heath, Eng.	5138	0	7 do.	
New Malton, Eng.	5410	0	6 do.	
Cork, Ireland -	51	$8 \quad 23$	1 year ${ }^{3}$	
Dublin, Ireland . .	5323	$6 \quad 20$	1 month	
Londonderry, Ireland .	550	$7 \quad 15$	1 year	
Isle of Man .	548	430	9 years	
22. Denmark, Norway, Sweden, and Russia.				
Copenhagen, Denmark	$55^{\circ} 41^{\prime}$	$12^{\circ} 40^{\prime} \mathrm{E}$.	50 years	
Apenrade, Denmark .	5450	$9 \quad 14$	9 do.	

23. Prussia, Austria, and Turkey.

24. Germany.

${ }^{1}$ Probably more.

${ }^{1}$ This place is described as being situated in "Longitude $28^{\circ} 34$ ' E., 1220 feet above the river," but the meridian from Greenwich as here given.
${ }^{s}$ There are several places of this name in Germany, ${ }^{2}$ Probably more.
which was intended.

It is probable that in the foregoing lists there are some mistakes in the location of places in Europe. Frequently the latitudes and longitudes were not given in the records and works which I consulted, so that I had no guide but the name, which might be common to several places. In some other cases, there was an uncertainty in regard to the meridian from which the longitude was reckoned.

Series of observations, continued only for a few months, may seem of too little importance to be worth preserving; but such collections, though insufficient to de-

[^4]termine the mean annual direction of the wind, are useful in obtaining monthly results, and hence the annual curve. To determine the latter, with the same accuracy that we do the mean direction for the year, we need much more extensive data; and these monthly collections serve to swell the list, and increase the number of months on which the average is based. More complete series, and also collections of observations from additional places, ${ }^{1}$ might, no doubt, have been obtained in many cases by applying directly to the observers; but I had already taxed my friends so far that I felt unwilling to put them to any more trouble; especially as a long time must necessarily intervene between furnishing the data and seeing any fruit of their labor.

${ }^{2}$ See Appendix A.

Google

SERIESB.

The fullowing alstracts show the proportionate length of time that the winds from each point of compass prevailed at the several stations; as indicuted by the number of observations.

Course.	May. ${ }^{1}$	$\begin{aligned} & \text { June, } \\ & \text { July, } \\ & \text { Aug. } \end{aligned}$	June, July. Aug. ${ }^{2}$	Jan.	Feb.	Mar.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
Winds within the Arctic Circle. Spitzbergen and vicinity. Melville Island and vicinity. ${ }^{3}$																
North	1	9	6	15	16	28	19	22	13	16	3	12	11	25	6	186
N. by E.			0	0	0	1	0	0	3	2	0	0	0	0	0	6
N. N. E.	9	14	1	2	0	0	3	0	1	6	0	9	0	. 0	1	22
N. E. by N.			3	0	0	0	0	0	0	0	0	0	0	0	0	0
N. E.	12	5	1	0	0	0	0	2	0	0	2	3	0	0	0	7
N. E. by E.			0	0.	0	0	0	0	0	0	1	0	0	0	0	1
E. N. E.	0	0	1	0.	0	0	0	0	0	0	3	0	0	0	0	3
E. by N.			0	0	0	0	0	0	0	1	0	0	0	0	0	1
East	7	25	9	5	2	0	5	2	1	0	1	0	1	0	9	26
E. by S .			3	0	0	0	0	0	0	0	0	0	0	0	4	4
E. S. E.	0	1	9	2	1	2	4	2	0	0	4	0	1	0	4	20
S. E. by E.			3	0	0	0	0	0	0	0	0	0	0	0	0	0
S. E.	4	16	13	3	2	0	3	0	7	2	5	0	0	0	2	22
S. E. by S.			0	0	0	0	0	0	1	0	0	0	0	0	0	1
S. S. E.	0	4	4	2	0	1	1	1	2	4	0	0	2	2	0	15
S. by E.			1	0	2	0	0	0	0	0	0	0	0	0	3	5
South	2	2	7	1	0	2	1	8	4	8	0	0	1	0	4	29
S. by W.			3	0	0	0	0	0	2	1	0	0	0	0	0	3
S. S. W.	2	0	0	1	0	0	1	1	4	4	2	0	2	0	0	15
S. W. by S.			0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. W.	9	9	10	0	0	1	0	0	2	3	0	7	6	3	1	23
S. W. by W.			1	0	0	0	0	0	0	0	0	3	0	0	0	3
W. S. W.	0	0	5	1	0	0	0	0	1	0	2	2	0	1	0	7
W. by S.			0	0	1	0	0	0	0	0	0	0	0	0	0	1
West	5	17	3	1	2	4	0	0	8	1	13	0	9	3	2	43
\dot{W}. by N .			2	0	2	0	0	0	0	0	- 4	2	0	0	0	8
W. N. W.	2	2	3	5	2	0	0	2	0	7	6	4	2	0	4	32
N. W. by W.			0	0	0	0	0	0	0	0	2	2	0	0	1	5
N. W.	6	14	2	1	0	6	6	10	6	2	0	4	0	2	7	44
N. W. by N.			1	0	0	0	0	0	0	0	0	0	2	0	2	4
N. N. W.	1	8	0	15	18	8	8	6		3	2	8	15	14	6	107
N. by W.			0	7	4	6	1	0	1	0	1	2	10	8	4	44
and calm $\}$	2	22	3	1	6	3	8	6	0	2	13	2	0	2	2	45

${ }^{1}$ These observations were taken from May 1 to 7, on Parry's voyage from Hammerfest, Norway, to Spitzbergen; from June 20 to August 28, at Hecla Cove, lat. $79^{\circ} 55^{\prime}$, lon. $16^{\circ} 49^{\prime} \mathbf{E}$. ; and during the remainder of the time, off the north and west coasts of Spitzbergen.
${ }^{2}$ These observations were taken on the ice north of Spitzbergen, between the island and lat. $82^{\circ} 45^{\prime}$, the most northerly point ever reached by man.
${ }^{3}$ These observations were taken from August 28, 1819, to August 27, 1820 ; viz. : 314 days at Winter Harbor, lat. 74° 45^{\prime}, lon. $110^{\circ} 48^{\prime} \mathrm{W}$., 48 days along the southern shore of the island, and the remaining 4 days a little eastwand of the island.

${ }^{1}$ These observations extend from October, 1830, to March, 1832, inclusive.
2 These observations were taken from August 13, 1822, to August 12, 1823, viz.: 817 days at Igloolik, lat. $69^{\circ} 21^{\prime}$, lon. $81^{\circ} 42^{\prime}$ W.; 9 days on the coast of the island, 28 days in the strait of Fury and Heckla, lat. 69° to 70°, lon. 82° to $86^{\circ} \mathrm{W}$.; and the remaining 11 days, off the west entrance of the same.

Course.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
Winds within the Arctic Circle.-Continued. Igloolik and vicinity.-Continued.													
East	θ	0	0	0	0	2	0	6	0	4	0	0	12
E. by S.	0	0	0	0	0	0	0	0	0	0	0	0	0
E. S. E.	0	0	0	0	4	0	2	2	4	4	2	0	18
S. E. by E.	0	0	0	0	0	0	0	0	0	0	0	0	0
S. E.	4	0	0	0	6	2	20	7	4	5	2	0	50
S. E. by S.	0	0	0	0	0	0	1	0	2	1	0	0	4
S. S. E.	2	0	0	0	2	0	6	1	4	2	0	0	17
S. by E.	0	0	0	0	0	0	0	0	0	0	0	0	0
South	2	0	0	0	8	4	0	0	0	5	2	0	21
S. by W.	0	0	0	0	0	0	0	0	0	0	0.	0	0
S. S. W.	0	0	0	0	0	0	0	0	0	0	0	2	2
S. W. by S.	0	0	0	0	0	0	0	0	0	0	0	0	0
S. W.	2	0	4	0	4	6	0	2	0	0	4	0	22
S. W. by W.	0	0	0	0	0	0	0	0	0	1	0	0	1
W. S. W.	0	0	0	6	3	0	0	0	0	0	0	2	11
W. by S.	0	0	0	0	2	0	0	0	0	0	0	0	2
West	2	4	12	6	4	6	2	3	6	0	12	22	99
W. by \mathbf{N}.	0	2	0	0	0	0	0	0	2	0	0	0	4
W. N. W.	4	2	4	2	1	2	2	4	6	1	6	0	34
N. W. by W.	0	0	0	0	0	0	0	6	2	0	0	0	8
N. W.	16	26	20	18	8	8	8	7	18	13	18	16	176
N. W. by N.	0	0	2	0	0	0	0	2	0	0	0	0	${ }^{4} 4$
N. N. W.	6	6	6	15	6	10	2	7	2	4	10	6	80
N. by W.	2	0	0	0	2	2	2	0	0	0	0	2	10
$\left.\begin{array}{c} \text { Calm or } \\ \text { variable } \end{array}\right\}$	0	0	0	0	0	0	6	2	0	0	2	0	10
Winter Island and vicinity. ${ }^{1}$													
North	6	6	8	6	4	6	6	0	0	4	10	11	67
N. by E.	0	2	2	0	0	0	0	5	0	12	4	0	25
N. N. E.	1	0	4	2	4	4	6	0	0	6	8	2	37
N. E. by N.	0	0	0	0	0	0	0	0	0	0	0	0	0
N. E.	2	0	0	3	8	0	4	3	3	2	2	0	27
N. E. by E.	0	0	0	0	0	0	0	0	2	0	2	0	4
E. N. E.	5	0	0	4	0	4	0	1	0	0	0	0	14
E. by N.	0	0	0	0	0	0	0	0	2	0	2	0	4
East	0	0	0	4	0	2	2	2	2	4	2	0	18
E. hy S.	0	0	0	0	0	0	0	0	2	0	0	0	2
E. S. E.	0	0	2	2	2	8	4	0	4	5	0	2	29
S. E. by E.	0	0	0	0	0	0	0	0	0	0	0	0	0
S. E.	0	0	0	2	2	6	4	2	4	4	2	8	34
S. E. by S.	0	0	0	0	0	0	0	0	0	0	0	0	0
S. S. E.	0	0	0	2	0	0	0	1	3	0	0	0	6
S. by E.	0	0	0	0	0	0	1	0	0	0	0	0	1
South	0	0	0	2	1	1	10	4	6	0	2	0	26
S. by W.	0	0	0	0	0	0	0	2	4	0	0	0	6
S. S. W.	0	0	0	0	0	2	0	6	2	0	0	2	12
S. W. by S.	0	0	0	0	0	1	0	0	1	0	0 4	0	2 32
S. W.	0	2	5	6	2	4	0	5	0	4	4 0	0	32
S. W. by W.	0	0	0	0	0	0	0	1	0	0	0 0	0 0	7
W. S. W.	0	0	0	2		0							

${ }^{1}$ These observations were taken from August 1, 1821, to July 31, 1822, viz.: 269 days at Winter Island, lat. $66^{\circ} \mathbf{1 1}^{\prime}$, lon. $83^{\circ} 10^{\prime} \mathrm{W}$.; 65 days in various bays and straits within 100 miles of it; 6 days in the upper part of Hudson's Strait, and the remaining 25 days off the northeast coast of Melville Peninsula. The island itself lies just without the Arctic Circle (21 miles), but some of the observations were taken within.

Course.	Jan.	Feb.	March.	April.	May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Total.
Winds within the Arotic Circle.-Continued.													
Winter Island and vicinity-Continued.													
W. by S.	0	0	0	0	0	1	0	4	1	0	0	0	6
West	6	0	2	4	6	5	2	1	1	0	6	0	33
W. by N .	0	0	2	0	2	1	1	2	2	0	0	0	10
W. N. W.	10	3	13	4	2	0	0	12	2	2	2	4	54
N. W. by W.	0	0	0	0	0	0	4	2	4	0	0	0	10
N. W.	18	22	18	7	12	12	10	3	4	4	10	25	145
N. W. by N.	0	2	0	0	0	1	0	0	2	0	0	0	5
N. N. W.	14	17	6	6	14	0	2	4	0	6	4	8	81
N. by W.	0	2	0	0	0	0	4	0	7	9	0	0	22
$\left.\begin{array}{c} \text { Calm or } \\ \text { variable } \end{array}\right\}$	0	0	0	4	0	2	2	0	2	0	0	0	10
Baffin's Bay, and the contiguous Bays, Straits, and Inlets.													
Course.	June, 1821.	June, 1824.	July, $1824 .$	July, 1819.	July, 1821.	$\left\lvert\, \begin{gathered} \text { Aug. } \\ 1819-20 \end{gathered}\right.$	Aug. 1822.	Ang. 1823.	Ang. 1824.	Sept. 1824.	Sept. 1819.	Sept. 1823.	Total.
North	0	1	19	4	9	6	0	4	7	2	0	6	
N. by E.	0			0	1	2	0	0			0	0	
N. N. E.	1			4	1	0	0	2			4	6	
N. E. by N.	0			0	3	0	0	0			0	0	
N. E.	0	4	10	0	3	0	0	3	3	5	3	2	
N. E. by. E.	0			0	0	1	0	0			2	0	
E. N. E.	0			0	0	0	0	0			0	2	
E. by N.	0			0	2	4	0	0			0	0	
East	0	22	1	4	3	3	0	4	6	7	2	4	
E. by S.	2			1	1	0	0	0			0	2	
E. S. E.	0			0	0	0	2	0			2	2	
S. E. by E.	2			2	0	0	0	0			2	0	
S. E.	3	2	10	2	6	0	0	3	14	13	3	3	
S. E. by S.	0			2	1	0	0	0			2	0	
S. S. E.	4			5	2	0	2	6			2	0	
S. by E.	0			2	0	0	0	0			0	0	
South	0	17	5	0	2	1	2	5	7	11	8	2	
S. by W.	0			0	2	4	0	0			0	0	
S. S. W.	5			0	2	2	1	0			0	4	
S. W. by S.	0			0	2	0	0	0			0	0	
S. W.	2	6	3	5	1	7	3	2	5	2	2	3	
S. W. by W.	2			0	2	3	0	0			0	0	
W. S. W.	4 -			2	1	4	1	0			4	0	
W. by S.	0			0	2	0	0	0			0	0	
West	6	0	3	7	3	3	1	2	3	6	3	8	
W. by N .	0			0	1	0	2	0			0	0	
W. N. W.	2			0	0	1	5	0			2	8	
N. W. by W.	2			4	4	4	0	0			4	0	
N. W.	1	4	11	2	3	7	2	2	14	14	5	6	
N. W. by N.	0			0	0	0	0	0			0	0	
N. N. W.	2			11	2	2	0	5			5	2	
N. by W.	0			2	0	0	0	0			1	0	
$\left.\begin{array}{c} \text { Calm or } \\ \text { variable } \end{array}\right\}$	0	4	0	3	2	6	0	0	3	0	8	0	

Norr.-The following table shows the latitudes and longitudes in which these observations were taken:-

Date.	Latitude.	Longitade.	Dato.	Latitude.	Longtude.	Date.	Latitade.	Longitade.
June, 1821	58° to 622°	11° to 65°	July, 1824	69° to 71°	58° to 62°	Aug. 1824	71° to 74°	61° to 64°
" 1824	$59 \frac{1}{2}$ to 69	912 to 51	Aug. 1819-20	721 to 75	78 to 101t	Sept. 1819	60 to 67	40 to 84
July, 1819	61 to 64	65 to 76	" 1822	69 to	80 to	"، 1823	60 to 67	40 to 84
" 1821	61 to 64	65 to 76	" 1823	66 to 69	82 to 88	" 1824	57 to 74	32 to 66

${ }^{1}$ These observations were taken at Port Bowen, from September 28, 1824, to July 19, 1825, 46 days in Prince Regent's Inlet, and the remaining 24 days, to complete the year, between the parallels of latitude $73^{\circ} 40^{\prime}$ and $74^{\circ} 24^{\prime}$, and in longitudes ranging from $66^{\circ} 52^{\prime}$ to $85^{\circ} 48^{\prime} ; 17$ days out of the 24 being spent west of longitude 80°.
${ }^{2}$ These nbservations were taken from October, 1841, to April, 1842, inclusive.

${ }^{1}$ These observations were taken from September 1, 1820, till August 31, 1821, but were published in full only from January 12 to May 9. In the published abstracts for the year, the winds are divided merely into easterly and westerly, as follows:-

Easterly Westerly	14	$15 \frac{1}{2}$ 122	153 154	18 12	24 7	24 6	$17 \frac{1}{3}$ 19	15 15	15 15	221 178	118 ${ }_{1}^{18}$	109 204	2101 1481 1

The station is about 300 miles north of Great Slave Lake.

${ }^{1}$ March to December, 1842, and January and February, 1844.
2 "Norway House is situated on a branch of Nelson's River, about 20 miles due north of the outlet of Lake Winnepeg, and is supposed to be about 400 feet above the level of the sea."-D. Ross.

Course．	Jan．	Feb．	March．	April．	May．	June．		July．	Aug．		Sept．		ct．	Nor．		Deo．	Total．
Winds in British and Russian America．－Continued． Nain，Labrador．																	
North	34	16	37	13	6	8				5	9		12	8	8	12	160
N．E．	1	9	8	9	21	23			2	2	3		2	4	4	0	82
East	0	0	4	0	6	17				7	24		7	12		0	77
S．E．	0	0	0	0	4	0			0	0	0		2	1		0	7
South	0	1	0	1	0	0			1	1	0		2	1		0	6
S．W．	0	1	0	1	1	1			3	3	2		3	0	0	0	12
West	16	19	4	3	7	5			28		17		22	29		30	180
N．W．	11	10	9	33	17	4			14		5		12	5		20	140
Calm	0	0	0	0	0	2			0	0	0		，	0		0	2
St．John＇s，Newfoundland．${ }^{1}$																	
					aterage for the meparate montre，in mours．												
－	彥	\＃	®ั̇	澹	茞	官	㤟	安	安	宫	宫	安	萢	¢	${ }_{8}^{\circ}$	ค்	－
North	33	45	28	24	56	40		20	28	39	18	24	21	72	52	96	529
N．N．E．	46	38	31	43	12	64	87	60	96	24	9	24	48	56	72	48	600
N．E．	60	84	40	53	68			56	124	63	15	87	78			0	841
E．N．E．	2	9	8	4	8		12		0	0	6	0	6	16	16	0	84
East	18	28	8	13	16							21			40	24	255
E．S．E．	11	2	0	3	0		3	8	12		0	0	0		12	0	59
S．E．	54	84	25	34	44	36	42	481	164	87	75	66	57	36	8	48	711
S．S．E．	11	23	12	12	16	16	12	36	20	33	15	6	9	16	12	48	239
South	59	41	22	18	52	56	27	48			48	33		56	44	48	525
S．S．W．	21	31	34	22	32	36	15	28	12	45	66	30	39	44	8	36	391
S．W．	132	89	78	101	104	32		140	5612	23	186	228	150	160		132	1433
W．S．W．	29	31	32	20	36	12	45	40	24	27	63	39	27	16	32	60	421
West	94	72	72	56	140	68	84	80	68	99	102	99		76	100	48	1051
W．N．W．	22	33	19	14	24	60	36	24	4	30	21	0	51	12	28	24	320
N．W．	40	54	32	19		120	63	52	16	27	18	0	30	32	76	48	566
N．N．W．	${ }^{6}$	19	15	10	40	36	21	8	20	15	3 ${ }^{3}$	78	9	4	8	80	224
Calm	30	46	27	42	8	20	42	40	32	57	81	78	42	32	40	24	496

${ }^{1} \mathrm{Mr}$ ．Templeman，to whom I am indebted for the foregoing observations，accompanies them with the following description of his locality：－
＂The town is situated on the north side of the harbor，on the declivity of an eminence，the highest point of which does not，I should imagine，exceed 250 feet above the level of the sea．At the back of this（north）there is a succession of valleys and hills，the highest of which must，I should think，be 700 feet above the level．The south side of the harbor is a high mountain ridge from 700 to 800 feet high；the harbor is open to the sea E．S．E．and W．N．W．，so that（the land being high on both sides of the narrows）it is often difficult，except when it blows hard，to say precisely how the wind is outside when between E．N．E．and S．S．W．We have nothing approaching to mountains in the imme－ diate vicinity，and the highest hill does not exceed 1000 feet，and that is 4 or 5 miles from the town．It may，I think， be laid down as a general rule that，except when the wind is very light and blowing between E．N．E．and S．S．W．，it is not subject to any local influence．＂．．．．＂There are no extensive rivers in this part of the colony；that which empties itself into the harbor is not more than $\mathbf{8 0}$ feet wide at the broadest part，and very shallow．＂

发	\％		total for tue separate montrg．															
			家	皿	稛	产	安	号	㛈	晏			¢	$\stackrel{\dot{8}}{\stackrel{\circ}{4}}$	¢	－		
Winds in British and Russian America．－Continued． Toronto，Canada． By Osler＇s Anemometer．																		
	795	${ }_{450} \mathrm{hrs}$ ．	hrs	$\left\lvert\, \begin{gathered} \text { ras } \\ 57 \end{gathered}\right.$	8． hrs ．	${ }^{\text {hrs．}}$	brs． 112	${ }^{\text {hrs }}$	$\begin{array}{ll} 3 \\ 5 & \text { hrs. } \\ 131 \end{array}$	${ }^{\text {hrs．}}$		rs．${ }^{\text {hr }}$		hrs．			71	
N．N．${ }^{\text {North }}$	795	433	24	25	25125	${ }^{10}$	26	55	${ }^{187}$	50		974	42	36	67	681	21	$\stackrel{92}{21}$
N．E．	330	208	66	22	2276	35	6^{61}	19	10	， 37		751	10	67	60	538	21	42
E．N．E．	310	470	43	33	3398	94	38	40	28	8110		628	871	108	39	780		6
East	460	519	26		8585	173	69	133	52					93	47	979	7	23
E．S．E．	395	278	51	28	854	64	46	108	32	66		715		53	44	673		15
S．E．	326	333	30	29	$9{ }^{44}$	73	54	71	${ }^{66}$	84	70	70	37	91	10	659	12	49
S．S．E．	301	264		19	1912	38			73	77				46	28	565	14	34
South	315	373	55	33	3375	57	51		109	84	30	30	51	17	36	688	26	170
S．S．W．	363	547	69	76	$6{ }^{39}$	36	98		139	66	50	50		58	165	910	16	41
S．W．	305	448	121	134	43	48	31	39	${ }^{62}$	28		32	421	131	52	753	33	106
W．S．W．	282	346			720	28	16	19	29				49	132	75	628	12	45
West	384	356	148	72	255	75	2	31	10	14		227	79	62	146	740	45	85
W．N．W．	326	400		108	849	33	21	23	25	2	73	737	71	109	163	726	11	32
N．W．	357	412	108	93	355	59	53	17	49	330	35	5513	79	83	51	769	36	59
N．N．W．	413	513	81	48	8106		209	41	100	33	58	58	79	31	42	926	22	49
Calm	2669	2409	475	375	75379	351	$\left.\right\|^{397}$	472	505	618		524	42	260	352	5078		0

Winds in the United States．
Hancock Barracks，Maine．

Course．	1829－30．4	$\begin{gathered} 1831 \text { to } \\ \text { inclusive. } \end{gathered}$	fotal for the separate monthe of 1329－30．											
			Jan．	Feb．	Mar．	A pril．	May．	June．	July．	Aug．	Sept．	Oct．	Nov．	Deo．
N.	36	731	7	5	2	1	2	0	0	0	2		5	4
N．E．	143	6501	17	13	18	14	11	15	7	13	9	4	8	14
E．	73	$296 \frac{1}{2}$	1	6	3	7	12	7	10	5	5	8	6	3
S．E．	170	$644 \frac{1}{2}$	9	5	15	16	16	21	18	15	13	14	13	15
S．	24	9072	0	0	1	3	1	3	7	7	0	2	0	0
S．W．	70	255 ${ }^{\text {¢ }}$	0	5	6	3	9	7	7	12	6	6	6	3
W．	5	256	0	0	0	0	1	1	1	0		2	0	0
N．W．	213	641	28	22	17	16	． 12	6	12	10	25	19	23	23
Eastport，Maine．														
Course．	$\begin{gathered} 1822 \text { to } \\ \text { inclusive. } \end{gathered}$	$\begin{gathered} 1831 \text { to } \\ \text { inclusive. } \end{gathered}$	total for the serabate monthg prom 1822 to 1826，inclusive．											
			Jan．	Feb．	Mar．	Aprii．	May．	June．	July．	Ang．	Sopt．	Oot．	Nor．	Deo．
N．	190	$216 \frac{1}{2}$	30	16	19	19	5	8	10	17	13	8	23	22
N．E．	125	164 $\frac{1}{2}$	13	16	8	10	6	7	2	20	14	9	12	8
S．E．	124	152 $\frac{1}{2}$	8	8	16	17	17	14	11	7	3	9	6	8
S．	52	$244 \frac{1}{2}$	1	3	10	2	5	5	1	4	4	7	5	5
E．	431	$659 \frac{1}{2}$	11	15	23	33	48	56	79	65	42	28	14	17
S．W．	242	$347 \frac{1}{2}$	14	18	15	20	26	21	13	17	23	30	27	18
W．	267	411 $\frac{1}{2}$	42	24	25	20	15	10	20	12	24	26	18	31
N．W．	398	$859 \frac{1}{2}$	36	41	39	29	33	29	19	15	27	38	46	46

${ }^{1}$ For the separate years，see the published volumes of the U．S．Army Mcteorological Register．

1 The average for the separate months extends from August 1, 1843, to April 1, 1847.
${ }^{2}$ For the separate years, see the published volumes of the U. S. Army Meteorological Register.
${ }^{3}$ The average for the separate months extends from July 1, 1843, to December 31, 1846.

${ }^{1}$ For the separate years, see American Almanac.
${ }^{2}$ For the separate years, see the pablished volumes of the U. S. Army Meteorological Register. 6

${ }^{1}$ This average is for the entire year 1835, the months of January, February, March, April, May, June, July, August, and November, 1836, and November and December, 1834.
${ }^{2}$ For abstracts for these years separately, see Annual Report of the Regents of the University of the State of New York for 1850.

' January 1 to August 1, 1842, and August 1 to December 31, 1837.
${ }^{2}$ January, February, May, and July.
3 The numbers above the line are the actual record. Those below show the same, distributed by estimation of the observer.

${ }^{1}$ For convenience of printing, these observations, originally taken for thirty-two points of compass, have been reduced to sixteen points since the computations from them were made, which may slightly affect the results.
${ }^{2}$ For the separate years, see the published volumes of the U. S. Army Meteorological Register. ${ }^{\mathbf{3}}$ Jan. to July.

' For the separate years, see the published volumes of the U. S. Army Meteorological Register.
${ }^{2}$ Making together a complete year, except the month of June.

${ }^{1}$ For separate abstracts for these years, both annual and monthly, see Annual Reports of the Regents of the University of the State of New York.
${ }^{2} 1829$ omitted.

${ }^{1}$ For separate abstracts for these jears, both annual and monthly, see Annual Reports of the Regents of the University of the State of New York.
: 1829 omitted.

${ }^{1}$ For separate abstracts for these years, both annual and monthly, see Annual Reports of the Regents of the University of the State of New York.
${ }^{2} 1829$ omitted.

[^5] sity of the State of New York.
${ }^{2} 1829$ omitted.
${ }^{3}$ These observations were taken by means of a self-registering vane, and the time is given in days, hours, and minutes.

${ }^{1}$ For the separate years, see the published volumes of the U. S. Army Meteorological Register.
${ }^{2}$ A hill, directly west of this place, accounts for the winds from that direction. See Regents' Rep ort for 1850, p. 245.

[^6]Winds in the United States.-Continued.
State of Pennsylvania.

${ }^{1}$ For abstracts for the separate months, see Journal of the Franklin Institute.

${ }^{1}$ For separate abstracts for these years, see the published volumes of the U. S. Army Meteorological Register.
${ }^{2}$ November, 1840, substituted for November, 1841.

Winds in the United States．－Continued．																		
Course．			Fort McHenry，Maryland．															
			$\begin{gathered} 1831 \text { to } \\ \text { 1842, } \\ \text { inclusive. } \end{gathered}$															
			Jan．	Feb．	Mar．	April．			Juls．	Aug．	Sept．	Oot．	Nor．	Doo．				
$\stackrel{N}{N}$		5				$22^{\frac{1}{2}}$	11	2	18	2	2	2	10	3	2	5	11	5
N．E．		39		61	29	24	18	29	15	16	10	23	22	25	27	29		
E．		9		72	14	11	34	32	17	9	3	7	10	14	14	7		
S．E．		64		$8{ }^{2}$	11	11	23	25	34	32	24	33	20	23	18	10		
S．		22		$8 \frac{1}{1}$	1	1	2	3	14	9	19	8	12	1	2	0		
S．W．		123		9	16	23	17	10	22	22	38	27	33	25	15	16		
W．		21		5	24	25	19	19	30	22	34	25	21	17	18	24		
N．W．		82		1	49	44	39	29	21	38	26	29	30	43	45	64		
	Annapolis， Maryland．		Washington City．															
	巡						total for the separate monthe pron 1823 to 1830，inclubite．											
							豈					官	曾	が号	$\stackrel{\circ}{4}$	ค．		
N．	37	69	161	72	9	263		1511	9	19	1216	12	18		210	9		
N．E．	48	151	460	213	95	432		4644	48	32	2630	27	43	55	034	35		
E．	24	44	72	30	4	189		34	7		1110	3	6	10		3		
S．E．	40	378	343	94	34	203	31	3125	36	24	4333	33	37	25	114	21		
S．	83	156	381	163	43	327		1919	29	29	4730	36	33	33		35		
S．W．	26	150	595	271	124	562	49	4949	27	43	4763	73	58	34	353	56		
W．	28	106	71	115	72	384		146	4	4	47	2	2	5	$2{ }^{2}$	4		
N．W．	72	404	835	501	1002	703		1168	88	79	58.51	62	51	60	88	85		
Course．				Old Point Comfort，Virginia．														
				total for the separate months fron 1826 to 1830，inclusive．														
			Jan．	Feb．	Mar．	April．	May．	June．	July．	Aug．	Sept．	Oct．	Nov．	Doa				
N．		24		28	528	29	13	14	10	3	1	0		21	17	13	17	
N．E．		49	33	$1485 \frac{1}{4}$	33	33	36	26	44	26	29	30	40	39	25	32		
E．		21	23	465	9	13	7	11	13	18	10	11	13	9	10	7		
S．E．		62	46	$690 \frac{1}{4}$	9	13	22	27	36	29	30	27	18	14	18	11		
S．		21	304	582	1	10	5	13	11	10	7	9	6	4	7	8		
S．W．		83	111	1387t	28	31	43	36	28	43	68	42	28	28	36	46		
W．		53	77	449	16	7	16	12	14	16	7	24	8	17	19	13		
N．W．		53	108	622 ${ }^{\frac{1}{2}}$	30	21	12	15	6	7	4	6	16	27	23	21		

${ }^{1}$ For abstracts of these years separately，see the published volumes of the U．S．Army Meteorological Register．
${ }^{2}$ Two independent registers for this station for the years 1881，33，34，35，and 38.
${ }^{3}$ Calms 52.8 ．

[^7]\qquad
\qquad

[^8]

[^9]
${ }^{1}$ For separate abstracts for each of these years, see the published volumes of the U. S. Army Meteorological Register.

${ }^{1}$ For separate abstracts for each of these years, see the published volumes of the U.S. Army Meteorological Register.

Winds in the United States．－Continued． Petite Coquille，Louisiana．																	
Coarse．		1827 to 1830， induaive．${ }^{1}$		total for fue bepasate monthe．													
		穿	¢	吻	安	亩	:	容	安	帯	ءٌ	尔	คั่				
$\stackrel{N}{N}$.					04	12	12	9	7 12	$2{ }^{6}$	3 19	${ }^{8}$	21	48	4	7	16
E．			54	26	23	21	22	18	12	15	25	15	23	26	28		
S．E．			96	9	10	11	29	16	18	16	12	17	10	24	24		
S．			97	7	14	14	14	13	8	5	8	4	3	4	3		
S．W．			96	9	12	14	7	21	24	38	22	14	15	13	7		
W．			39	17	16	11	11	13	20	10	9	5	9	11	7		
N．W．			08	23	10	24	18	12	16	18	19	10	15	28	15		
Fort Jessup，Louisiana．																	
客																	
		妥	迳	㟥	崽	宫	$\dot{\text { a }}$	軆	$\stackrel{\rightharpoonup}{⿷ 匚}$	\％	$\stackrel{5}{4}$	¢̆					
N．	1158	27	20	29	17	4	22	31	33	24	18	26		60	21		
N．E．	970ㄹ	36	31	48	33	33	36	56	68	54	39	32		51	76		
E．	873	21	17	21	23	31	20	20	32	26	18	16		26	51		
S．E．	894！	34	60	39	51	53	51	44	32	48	38	61		55	84		
S．	$839 \frac{1}{2}$	25	26	18	48	38	36	30	22	20	25	24		65	42		
S．W．	908！	49	27	38	36	51	41	27	18	24	35	29		9	54		
W．	825	18	20	13	18	10	19	15	5	7	21	7		19	15		
N．W．	835	38	47	30	22	20	23	25	30	45	47	53		1	23		
Fort Wood，Louisiana．																	
Course．		total for the szpasate moktrs．															
		学	退	或	官	$\dot{\text { in }}$			合	昌	产	\％		荇	¢		
N．	52	9	4	1	1	3		3	1	0	5		6	10	9		
N．E．	172	7	9	3	13	18		5	17	22	27	23		10	18		
E．	100	11	9	8	7	4		6	8	10	11	12	2	4	10		
S．E．	240	16	18	29	22	17		30	81	6	24	15		23	9		
S．	88	9	12	8	5	10		18	9	5	8		7	6	3		
S．W．	114	4	2	14	12	16		17	12	22	3		2	4	4		
W．	99	15	13	13	7	14		6	5	8	6		4	${ }^{3}$	7		
N．W．	228	19	17	17	23	11		18	10	20	11	24		30	33		

${ }^{1}$ For abstracta for these years separately，see the published volumes of the U．S．Army Meteorological Register．

${ }^{1}$ For separate abstracte for each of these jears, see the published volumes of the U. S. Army Meteorological Register.

1 These observations were taken with extreme minuteness in regard to direction, and then resolved in the direction of the cardinal points, taking into account both time and estimated force.
2. This register extends from Nov. 1, 1840, to Sept. 80, 1848.

${ }^{1}$ For separate abstracts for each of these years, see the published volumes of the U. S. Army Meteorological Register.

Winds in the United States．－Continued． Detroit，Michigan．																					
$\begin{aligned} & \text { \& } \\ & \text { ®u } \\ & \hline 0 \end{aligned}$			$\stackrel{\sim}{\square}$				proportion for the meparate momthe．														
					$\underset{\text { á }}{\text { ¢ }}$	¢						$\stackrel{\rightharpoonup}{\dot{b}}$	单	$\begin{array}{\|l\|l} \stackrel{\rightharpoonup}{\circ} \\ \text { in } \end{array}$	¢̊＇	容	¢				
North	19	47		61				50	40	32		484	403	322		72	60	68	36	12	63
N．by E．	1	6		10		0				4	0	4		0	0	9	15	9	0		
N．N．E．	2	18		10		14	12	2	8	242	201	16	8	9	6	18	3	12	12		
N．E．by N．	1	2		0		0		0		0	0	0	0	0	0	0	3	0	3		
N．E．	15	60		45		31	36	28		967	72	2020	20	24	51	30	48	18	80		
N．E．by．E．	1	2		10		21		2		44	44	812	2	9	3	0	3	12	9		
E．N．E．	7	14		25		26		412		524	40	281	2	9	15	9	12	15	24		
E．by N ．	4	25		18		4		8	82	203	323	3212	2	6	0	9	24	9	6		
East	36	70		62		41		62	48	807	76	447	27	72	57	39	33	72	12		
E．by S．	0	5		18		8		48		0	4	201	21	15	3	9	15	9	6		
E．S．E．	4	8		4		9				4	41	16	0	9	12	3	3	18	0		
S．E．by E．	0	1		0		1		0			0	0	4	3	0	0	0	0	0		
S．E．	15	38		14		10	12	12		82	20	201	6	9	36	21	21	18	15		
S．E．by S．	0	0		1		2		0		4	0	0	0	0	3	0	0	3	0		
S．S．E．	4	14		6		9	12			8	83	3212	2	3	6	12	3	3	6		
S．by E．	2	6		13		0			1	16	8	4	4	6	0	15	3	3	3		
South	22	32		41		38	24	4		0	82	2448	83	33	69	66	39	18	24		
S．by W．	1	4		4		1	40	0		0	01	12	0	3	0	9	3	3	0		
S．S．W．	8	35		11		14	16	16		41	16	20 32	21	15	30	24	21	9	3		
S．W．by S．	1	6		4		18	12	20		8	01	1612	21	15	9	6	0	6	0		
S．W．	53	219		139		136	148	8148		0014	4012	2421		77	129	102	171	78	159		
S．W．by W．	5	12		15		29	4	416		201	12	44	83	33	12	12	6	12	9		
W．S．W．	10	52		46		65	60	60		284	44	125	23	39	51	30	48	69	63		
W．by S．	6	30		20		7	2	48	1	16	41	161	61	12	3	6	30	30	12		
West	46	122		62		68	88	88		523	324	403	67	72	75	75	75	126	81		
W．by N ．	1	5		8		6	4	44		8	4	8		3	6	3	9	12	0		
W．N．W．	9	38		8		18	36	36		123	324	40	42	21	3	3	15	21	9		
N．W．by W．	0	1		4		3				0	4	8	4	0	0	0	6	0	0		
N．W．	60	138		38		59	84	45		683	367	7648		30	84	75	45	75	120		
N．W．by N．	2	7		5		8	12	8		4	4	88	8	0	3	9	3	6	6		
N．N．W．	27	67		13		33	52	36		441	162	2012		30	15	39	39	24	57		
N．by W．	2	17		12		1		12		12	4	0		12	0	24	12	6	12		
Fort Gratiot，Michigan．																					
$\begin{aligned} & \text { © } \\ & \text { 0 } \\ & 0 \end{aligned}$		total for the separate months from 1831 to 1835，inclusive．													$\stackrel{\infty}{\infty}$						
		品	:	嵌	范	$\dot{\text { 宏 }}$	$\stackrel{\oplus}{\square}$	咅	$\dot{\text { 曾 }}$	$\begin{gathered} \dot{\Delta} \\ \dot{\sim} \\ \dot{\infty} \end{gathered}$	و́g	$\begin{aligned} & \dot{8} \\ & 4 \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$								
N．	352	9	18	11	24	20	20	26	24	17		75	． 6	6	5		112 $\frac{1}{2}$		27		
N．F．	$568 \frac{1}{2}$	16	14	21	32	25	19	24	27	22	18	814	10		118		951		7）		
F．	551	6	4	2	1	4	0	1	0	1	0	02	6	B	7		164		215		
S．E．	2031	10	10	8	6	11	11	8	11	15	16	66	12		40		421				
S．	440	28	23	34	23	20	26	29	32	30	25	527	41		11		272 $\frac{1}{8}$		97		
S．W．	905	36	31	38	21	39	38	43	37	45	46	649	33		120		148		864		
W．	261	19	14	16	12	10	7	9	6	$6{ }^{7}$	14	4.22	25		8		180		$46 \frac{1}{2}$		
N．W．	5011	31	27	25	31	26	29	14	19	13	29	926	20		57		81		$18 \frac{1}{1}$		

${ }^{1}$ For separate abstracts for each of these years，see the published volumes of the U．S Army Meteorological Register．
\qquad

Winds in the United States．－Continued． Fort Brady，Michigan．													
880		total for the smparate yontas of 1823，24，25，26，27，28，and 30.											
		怘	发		安	$\dot{\text { g }}$	号	宫	安	$\underset{\oplus}{\text { à }}$	\％	号	¢ั๋
N．	567！	13	11	12	5	7	9	12	11	13	9	17	12
N．E．	565	15	13	11	6	14	14	14	13	11	17	10	20
E．	750 ${ }^{\frac{1}{2}}$	24	22	17	22	24	22	9	13	10	14	35	33
S．E．	1343 t	43	39	56	46	40	33	22	28	42	37	32	37
S．	468	11	9	16	10	5	12	12	9	19	15	18	12
S．W．	596	15	14	10	20	15	14	34	32	16	20	17	17
W．	830 ${ }^{\text {d }}$	24	30	26	40	38	47	49	50	34	33	20	18
N．W．	1447 $\frac{1}{2}$	33	32	38	31	43	29	34	30	35	41	31	37
Prairie du Chien，Wisconsin．													
		fotal for thin beparatm yonthe of 1822 and 1824.											
宊	む.	息	\％	垵	㝘	$\dot{シ}$	号	官	实	$\underset{\oplus}{\stackrel{\rightharpoonup}{E}}$	\％	叐	¢
N．	$789 \frac{1}{2}$	10	13	7	15	13	6	13	12	8	14	10	13
N．E．	1914	1	0	4	12	2	0	0	1	4	2	4	2
E．${ }^{\text {E }}$	227	0	0	1	5	0	1	0	1	2	0	0	0
S．E．	3782	3	7	10	2	14	9	6	9	12	11	10	5
S．	1061	14	11	6	3	13	15	11	18	14	8	9	8
S．W．	790	7	5	6	10	9	2	9	5	4	4	5	8
W．	6612	5	8	6	9	2	10	3	5	0	8	8	6
N．W．	968 ${ }^{\frac{1}{2}}$	22	13	22	4	9	6	13	11	16	15	12	20
Green Bay，Wisconsin．													
\％		total for the beparate months prox 1822 to 1830，incleitre．											
		g	囱	苞	宸	宫	官	官	曾	莒	む	\％	ถ่
N ．	874	18	38	19	37	22	19	9	15	25	21	24	18
N．E．	1014	49	46	88	84	102	78	89	78	54	48	56	28
E．	300	2	5	18	4	6	5	5	8	12	10	8	6
S．E．	319	1	1	8	5	5	12	6	17	12	17	5	8
S．	1410	36	34	32	24	49	25	40	30	37	49	39	46
S．W．	1481	122	98	81	84	80	92	108	93	81	90	86	113
W．	647	23	25	28	22	9	24	15	23	29	27	30	25
N．W．	444	28	12	11	10	6	15	9	15	21	17	23	33

－For abstracts for these years separately，see the published volumes of the U．S．Army Meteorological Register．

Winds in the United States．－Continued． Fort Winnebago，Wisconsin．													
$\circ$$\stackrel{\circ}{5}$00		total for the beparate montes of 1831，32，35，and 36.											
		号	®i	界	兌	安	号	官	8		¢	穴	¢
N．	1063	19	16	15	13	17	14	13	15	18	17	26	19
N．E．	44921	2	6	1	9	14	12	13	6	5	10	13	5
E．	388	9	3	3	6	9	12	5	12	6	11	10	5
S．E．	$357 \frac{1}{2}$	6	4	5	10	13	8	19	17	5	11	6	14
S．	873	20	34	33	18	35	27	28	32	27	29	18	35
S．W．	573	23	23	34	24	11	10	12	12	31	16	12	11
W．	$668 \frac{1}{2}$	28	14	21	23	14	22	13	11	13	11	13	15
N．W．	$797 \frac{1}{2}$	13	18	12	17	11	15	21	19	15	19	21	19
Bloomington，Iowa．													
范		total for the separati monthe of 1843，45，and 46.											
		嵒	¢		窗	蔮	号	宫	安	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\substack{\circ \\ \infty}}$	®ٌ	$\stackrel{8}{4}$	$\stackrel{\square}{\circ}$
N．E．	186	10	9	11	4	6	6	11	${ }^{6} 6$	4	4	4	5
S．E．	397	13	9	19	28	17	15	26	35	29	21	23	21
S．W．	425	28	22	15	24	20	27	28	25	27	40	14	22
N．W．	758	42	44	48	34	19	12	28	27	30	28	49	45
Fort Atkinson，Iowa．													
©宫	$\underset{\sim}{\underset{\sim}{\sim}}$	fotal for the siparate momths．											
		！	官	$\begin{aligned} & \text { 花 } \\ & \text { N } \end{aligned}$	完	亩	号	閏	8	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\substack{\circ \\ \hline}}$	\％	8	ค்
N．	68	2	4	5	4	21		1	0	31	4	3	51
N．E．	97	913	61 ${ }^{2}$	91 $\frac{1}{2}$	4	5	$1 \frac{1}{2}$	2	0	2	212	4t	41
E．	107	$2 \frac{1}{2}$	3	12	16	$2 \frac{1}{3}$	$1 \frac{1}{2}$	3	51	$7 \frac{1}{2}$	4	$9 \frac{1}{2}$	6
S．E．	95	2	31	5	0	61	$9 \frac{1}{8}$	5	$3 \frac{1}{2}$	5	2	$2 \frac{1}{2}$	3
S．	118	3	41	3	2	1	3	81	10	7	11	$2 \frac{1}{2}$	$5 \frac{1}{2}$
S．W．	191	9	2	$7 \frac{1}{2}$	13	101	8	6	13	13	12t	31 ${ }^{\frac{1}{2}}$	4
W．	362	163	3	121 $\frac{1}{2}$	13	9	16	01	231	151	14	22	22
N．W．	361	$17 \frac{1}{1}$	291	18	8	25	191	18	61	$6 \frac{1}{3}$	13	121	101 $\frac{1}{2}$
Sourcr or the Des Moings，Iowa．－＂Whenever a bend，an angle，or some prominent bluff，is more exposed to the fury of the northwest winds that blow violently a great part of the year，＂\＆c．－Nicoller．													

[^10]
${ }^{1}$ For separate abstracts for each of these years, see the published volumes of the U. S. Army Meteorological Registar.
Winds in the United States．－Continued．
Fort Leavenworth，Indian Territory．

这	$\begin{aligned} & \text { 䔍 } \\ & \underset{\Xi}{2} \end{aligned}$	total for the bepabate montas thox 1831 to 1834，inclubiva．											
		䦡	亩	妾	安	垵	官	官	¢	$\stackrel{\stackrel{\rightharpoonup}{\mathbf{a}}}{\dot{\omega}}$	¢	号	¢
N ．	497	25	30	22	17	13	8	5	9	14	16	14	23
N．E．	227 ${ }^{2}$	3	2	2	5	4	1	6	8	8	10	7	9
E．	155 $\frac{1}{2}$	4	1	5	1	6	3	5	4	6	1	4	6
S．E．	520	6	9	11	8	11	14	15	20	19	9	5	21
S．	13681	40	36	52	62	64	72	73	56	43	47	46	26
S．W．	3112	4	5	2	2	1	2	6	7	9	9	10	4
W．	367 ${ }^{\text {a }}$	15	8	19	9	18	7	3	4	11	8	14	12
N．W．	5701	27	22	11	16	7	13	11	16	10	25	18	24

Fort Laramis．－It is stated in Fremont＇s Report，page 44，that the prevailing wind at this station is west．
Old Fort Wayne，Indian Territory．

\％		total for the beparati monthe．											
		号	亩	匂	寅	离	官	咅	安	碢	号	$\stackrel{5}{4}$	号
N．	77	10	17	8	3	2	0	0	0	3	9	15	10
N．E．	181	26	17	21	9	8	8	13	18	24	21	9	7
E．	127	3	6	20	4	7	21	14	8	16	9	14	5
S．E．	345	17	25	32	44	49	40	39	23	33	17	9	17
S．	175	1	16	24	4	12	28	12	14	12	20	17	15
S．W．	282	31	16	20	18	37	16	38	36	16	9	18	25
W．	137	7	9	27	12	3	1	7	19	5	6	18	23
N．W．	225	29	8	36	26	6	8	5	8	13	34	24	28

Fort Gibson，Indian Territory．

－		total yor the smplate montrs or 1828，29，and 30.											
		息	官	总	言	安	宫	$\dot{\Delta}$	安	$\stackrel{\stackrel{\rightharpoonup}{6}}{\text { B }}$	\％	空	号
N．	424	16	9	5	4	1	0	1	3	15	7	11	1
N．E．	444	20	11	20	6	2	5	17	10	25	9	7	18
E．	906	5	4	4	4	2	3	3	5	5	13	14	8
S．E．	1526	45	46	54	50	85	76	45	68	40	49	29	40
S．	$712 \frac{1}{2}$	2	2	0	5	0	1	1	5	3	2	2	1
S．W．	$453 \frac{1}{2}$	3	4	0	5	0	3	14	1	1	0	4	3
W．	506	0	0	0	1	0	1	1	0	0	0	7	4
N．W．	510	2	9	10	15	3	1	11	1	1	13	17	18

＇For abstracts of these years separately，see the published volumes of the U．S．Army Meteorological Register．

Winds in the United States．－Continued．																					
$\begin{aligned} & \dot{0} \text { © } \\ & \text { Hy } \\ & \hline 0 \end{aligned}$			total for the separate months．																		
			号	©	安		宽	完		$\begin{aligned} & \dot{\oplus} \\ & \stackrel{\rightharpoonup}{g} \end{aligned}$	官		安		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { in } \end{aligned}$	¢			¢ّ		
N．		283	18	31	30		25		9	16	5		15		31	34		18	14		
N．E．		829	20	22	17		13		9	12	14		17		22	31		18	26		
E．		$279 \frac{1}{2}$	22	10	11		26	15	5	15	11		15		17	5		8	16		
S．E．		$524 \frac{1}{2}$	36	24	33		34	45	5	30	36		31		37	26		46	48		
S ．		768	40	32	$58 \frac{1}{2}$		57	83	3	96	104		78		61	45		22	27		
S．W．		$685 \frac{1}{2}$	45	50	41		50	47	7	47	44		57		29	58		66	50		
W．		401	24	34	38		24	15	5	13	22		10		14	10		30	40		
N．W．		$371 \frac{1}{2}$	42	25	$18 \frac{1}{2}$		12	23	3	12	12		24		29	32		33	24		
Fort Vancouver，Oregon．																					
©000				separate months from June 1833 to June 1834.															E		
		$\stackrel{9}{9}$		電			俞		号	官		$\frac{80}{\frac{8}{4}}$	$\underset{\substack{\stackrel{\rightharpoonup}{0} \\ i n}}{\substack{0}}$	¢	莯	\＆ั̇					
N．			0		O	0		2	1	0	0	4		0	1	0	0		1	5	
N．E．		0	66	5	50		6	4	3	11	6		1	5	6	9		10	0		
E．		23	30	3	－ 1		3	2	0	0	1		2	2	7	2		7	4		
S．E．		40	284	44	13		2116	6	14	9	13		12	22	27	51		42	0		
S．		15	188	1	10		710	0	8	22	19		33	39	23	6		10	3		
S．W		3	139	0	－ 8		10	7	31	13	18		21	5	10	0		6	0		
W．		3	23	0	－ 2		5	1	2	4	2		5	2	0	0		0	5		
N．W．		30	70	1	－ 8		5		6	6	10		11	7	8	2		0	1		
Calm			158	32	30		27	4	19	1	3		2	1	6	8		5	4		
Fremont＇s Tour，Oregon and California． It is not convenient to give an abstract，in tabular form，of the observations taken by Colonel Fremont during his tour in Oregon and California，in the years 1842，1843，and 1844．The results will be given in another place．																					
Winds in IMexico，South America，and the West Indies．																					
$\begin{aligned} & \dot{0} \\ & \text { \#y } \\ & \text { O } \end{aligned}$			Porto Cabello， Venezuela．				Matanzas，Cuba．														
							separite months of 1835.														
				莯			$\stackrel{\text { g }}{ }$	\％	箩	范	$\dot{\text { 佂 }}$	总	$\underset{5}{3}$	$\frac{\dot{0}}{\frac{0}{4}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	¢்	${ }^{\circ}$	¢			
North	20	26	$2{ }_{2}^{2} 21$	23	91	22	83	9	11	7	1	0	0	0	0	0	10	4	8		
N．N．E．	0	0	2 0 101 16	0	0	6	0					23									
$\stackrel{\text { N．E．}}{\text { E．}}$ N．	8	14	101 46 10 2	43	31	53	165	10	7	12	18	23	9	9	13	12	18	22	12		
E．N．E．	0	0 18	10 2 47 58	1 37	7 ${ }_{7}^{2}$	26	280 50	3	5	6	1	2	0	0	2	0	3	4	4		
E．S．E．	0	0	00	0	0	20	0														
S．E．	6	5	$17 \quad 21$	21	26	20	3	2	0	0	0	0	0	0	1	0	0	0	0		
S．S．E．	0	0	0 9	5	0	2	0														
South	7	5	$\begin{array}{lll}6 & 16\end{array}$	26	1	3	69	5	0	3	3	1	0	0	1	2	0	0	2		
S．S．W．	0	0	1 2 3	3	0	0	0														
S．W．	3	25	$3{ }^{3} \mathrm{26}$	19	0	2	2	0	0	0	0	0	0	0	0	2	0	0	0		
W．S．W．	0 15	0 34	$\begin{array}{ll}0 & 0 \\ 7 & 7\end{array}$	${ }^{0} 1$	0	0	0														
West W ．	15	34 0	$\begin{array}{lll}7 & 7 \\ 0 & 1\end{array}$	11	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
W．N．W． N．W．	0	0	$\begin{array}{ll}0 & 1 \\ 5 & 8\end{array}$	1 10	0 1	0 10	0	0	1	0	0	0	0	0	0	1	0	0	0		
N．N．W．	0	0	0 0	0	0	－	0														
$\left.\begin{array}{c} \text { Calm or } \\ \text { variable } \end{array}\right\}$	34	5	51	5	3	2	375	2	4	3	7	5	21	22	14	13	0	0	5		
Yucatan．－＂On the northern and western coasts of Yucatan，there is a constant N．E．wind throughout the year．＂－Purdy＇s Sailing Directory．																					

${ }^{1}$ For－abstracts for these years separately，see the published volumes of the U．S．Army Meteorological Register．
2 Date unknown．

Winds on the North Atlantic．－Continued． Latitude 30° to 35° ，Longitude from Greenwich 45° to 75° ．																			
	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \dot{\circ} \\ \dot{H} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 . \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & \dot{8} \\ & \dot{B} \end{aligned}$	\circ 8 8 8 0 0 0 \vdots 		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline-1 \end{aligned}$	長	total for the separate months．											
								¢	シ்	$\begin{aligned} & \text { 号 } \\ & \text { 品 } \end{aligned}$	電	$\dot{\underset{\Delta}{\Xi}}$	$\stackrel{\dot{\Xi}}{\stackrel{y}{g}}$	$\stackrel{\Delta}{\vdots}$	$\dot{8}$	若	¢	$\begin{aligned} & \dot{8} \\ & \text { 8 } \end{aligned}$	هٌ
North	30	20	17	21	93	85	266	18	18	28	34	32	14	11	22	17	25	26	26
N．N．E．	49	56	54	51	165	164	539	39	34	56	88	80	19	31	43	46	49	30	24
N．E．	43	40	26	34	98	47	288	15	12	25	43	35	14	24	13	29	45	20	13
E．N．E．	74	50	47	79	138	105	493	36	12	40	48	85	21	45	37	43	57	52	17
East	43	40	25	24	52	54	238	15	7	16	29	26	11	25	20	14	49	19	7
E．S．E．	83	39	67	72	184	114	559	28	21	49	62	89	21	78	39	37	59	37	39
S．E．	59	30	35	25	96	87	332	20	4	43	30	40	26	41	35	31	34	18	10
S．S．E．	112	70	25	61	216	150	634	36	30	57	104	92	54	49	50	50	45	44	23
South	60	36	19	33	122	98	368	16	32	28	53	50	47	49	24	6	30	19	14
S．S．W．	98	79	67	86	317	238	885	64	68	97	125	71	69	154	77	41	43	51	25
S．W．	34	31	23	46	151	102	387	24	19	52	48	42	32	50	42	15	13	22	28
W．S．W．	60	52	55	122	204	164	657	48	44	97	68	59	56	44	53	28	28	72	60
West	39	30	31	63	115	55	333	34	33	42	57	22	17	10	11	9	19	31	48
W．N．W．	37	55	48	104	212	163	619	65	74	111	89	34	26	20	11	19	43	49	78
N．W．	18	23	13	32	93	89	268	26	22	45	39	23	13	9	4	9	23	31	24
N．N．W．	56	44	24	61	154	161	500	35	39	59	76	50	29	24	38	34	33	46	37
Calm	52	14	34	59	103	64	326	21	13	23	37	32	39	19	27	43	24	25	23
Total	947	709	610	973	25131	1940	7692	540	477	868	1030			683			619	592	496
January	60	49	60	62	136	173	510												
February	18	29	37	53	190	150	477												
March	60	67	33	116	333	259	858												
April	111	72	2811	111	397	311	1030												
May	62	24	3411	116	431	195	862												
June	117	31	25	32	203	100	508												
July	118	84	74	114	208	85	683												
August	46	72	551	106	125	142	546												
September October	120	34 137	76 97	59 59	142 93	107 118	471												
November	101	66	65	66	146	148	592												
December	81	44	26	79	109	157	496												
Total	947	709	610	973	25131	1940	7692												
Latitude 25° to 30° ，Longitude from Greenwich 15° to 45° ．																			
$\begin{aligned} & \dot{4} \\ & \text { \#̈ } \\ & \stackrel{0}{8} \end{aligned}$			\circ 0	$\begin{gathered} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ \vdots \\ \hline \end{gathered}$	$\begin{gathered} 0 \\ \stackrel{\circ}{1} \\ 0 \\ 0 \\ 0 \\ 0 \\ \dot{0} \\ \vdots \\ \hline \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{0}{7} \\ & \stackrel{8}{9} \\ & 0 \\ & 0 \\ & \vdots \\ & \dot{H} \end{aligned}$	$\begin{aligned} & \text { 霛 } \end{aligned}$	total for the separate months．											
								坔	$\stackrel{\Delta}{0}$	$\begin{aligned} & \text { 플 } \\ & \text { gixy } \end{aligned}$	完	$\dot{シ}$	号	$\dot{\vdots}$	$\dot{\frac{50}{4}}$	$\begin{gathered} \stackrel{\vdots}{\circ} \\ \substack{\circ \\ \text { in }} \end{gathered}$	$\stackrel{\text { ®́ }}{ }$	$\stackrel{\stackrel{3}{\circ}}{8}$	¢ٌ
North	14	25	61	31	17	14	162	12										7	3
N．N．E．	81	203	210	89	81	48	712	34	26	23	24	23	96	155	125	58	41	72	35
N．E．	37	75	152	50	121	50	485	24	12	15	24	24	40	144	35	29	45	46	47
E．N．E．	34	80	149	172	204	149	788	69	39	30	46	51	67	140	89	68	62	64	63
East	12	27	77	62	90	71	－839	20	15	6	22	20	26	48	57	28	37	26	34
E．S．E．	15	37	57	75	121	81	386	31	16	28	31	20	29	31	23	30	34	46	67
S．E．	5	13	22	55	46	24	165	27	14	11	6	8	16	8	7	12	12	15	29
S．S．E．	14	11	35	94	69	38	261	27	7	12	23	7	20	8	12	34	32	32	47
South	7 10	${ }^{9}$	40	54	51	13	174	7	8	18	14	13	10	5	4	4	24	33	34
S．S．W． S．W．	10 3	16	40 26	87 36	${ }_{24}^{92}$	29 26	274	24	13	20	22	15	29	9	6	28	28	46	34
W．S．W．	7	23	35	53	45	16	122	${ }^{9}$	8	12	14	${ }^{6}$	8	${ }^{3}$	14	11	${ }_{16} 8$	16	17
West	5	13	25	7	9	－	179	16	10 9	12 20 3	${ }_{2}$	16 6	19 4	12	${ }_{14}^{14}$	15	18	16	17 2
W．N．W．	12	22	51	41	47	34	207	25	24	9	8	10	17	7	7	18	24	41	17
N．W．	5	12	26	34	18	8	103	7	5	15	7	6	11	11	1	10	9	15	
N．N．W．	23	41	76	63	40	12	255	18	16	23	22	15	46	36	6	17	29	14	13
$\underset{\text { Total }}{\text { Calm }}$	［ 5	16	48	39	${ }_{1108}^{5}$	26	187	13	8	17	6	6	21	18	12	15	20	40	11
Total	289	630	1130	1042	1128	648	4867	370	245	270	294	254	479	680	429	392	441	534	479
January	49	41	51	76	91	62	370												
February	28	36	52	76	33	20	245												
March	29	12	45	63	86	35	270												
April	10	37	56	52	99	40	294												
May	17	19	54	64	60	40	254												
June	21	64	99 218	122	105	68	479												
August	11	101	148	51	＋ 48	70	429												
September	8	65	82	110	90	37	392												
October	3	35	90	117	115	81	440												
November	32	53	115	105	155	76	534												
December	26	36	122	105	139	51	479												
Total	289	630	1130	1042	1128	648	4867												

	 	Course．	$\text { atitude } 15^{\circ} \text { to } 20^{\circ} \text {, Longitude from Greenwich } 45^{\circ} \text { to } 80^{\circ} \text {. }$		 	Course．	S
\％¢\％		Lon． 45° to 50° ．				Lon． 45° to 50° ．	압
		Lon． 50° to 55° ．				Lon． 50° to 55° ．	官
		Lon． 55° to 60° ．				Lon． 55° to 60° ．	－
	㑑OOOHー	Lon． 60° to 65° ．				Lon． 60° to 65°.	号㟧
		Lon． 65° to 70° ．				Lon． 65° to $70 .{ }^{\circ}$	边
		Lon． 70° to 75° ．				Lon． 70° to 75° ．	\％
出00000000このの○｜		Lon． 75° to $80 .{ }^{\circ}$		¢00000000び心ガ｜		Lon． 75° to 80° ．	100
		Total．		 	 	Total．	H §
＊	$\stackrel{\text { ®．}}{\sim}$	Jan．		＊		Jan．	会通
		Feb．				Feb．	首
		March．				March．	
		April．				April．	易.
		May．				May．	总
		June．				June．	I
	N0000000000nergivolm	July．			⿷匚⿰氵㔾刃心	July．	$\stackrel{\infty}{0}$
		Aug．				Aug.	
		Sept．				Sept．娄	
		Oct．				Oct．	
		Nov．				Nov．	
		Dec．				Dec．	

Winds on the North Atlantic．－Continucd． Latitude 15° to 20° ，Longitude from Greenwich 15° to 45° ．																			
$\begin{aligned} & \text { \& } \\ & \text { 炭 } \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\rightharpoonup}{c} \\ \stackrel{3}{8} \\ 0 \\ \stackrel{0}{0} \\ \dot{0} \end{gathered}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \hline 1 \end{aligned}$	$\begin{aligned} & \text { すi } \\ & \text { स्ष } \end{aligned}$	total for the separate yonths．											
								号	$\underset{\sim}{\dot{玉}}$	$\begin{aligned} & \text { 苟 } \\ & \underset{y y y}{*} \end{aligned}$	定	$\dot{山}$		关	安	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { N } \end{aligned}$	¢்	感	¢
North	3	66	69	13	7	7	165	9	11	14	8	4	10	39	20	18	22	4	4
N．N．E．	26	415	379	144	69	12	1045	48	53	36	37	63	115	210	185	94	74	76	54
N．E．	7	96	290	228	114	122	863	56	32	61	62	48	112	112	87	95	66	72	60
E．N．E．	4	105	286	316	157	87	955	59	51	48	46	37	87	114	104	84	103	143	79
East	1	31	95	70	51	67	315	23	18	23	21	16	19	20	36	31	30	50	28
E．S．E．	1	33	44	37	23	39	177	13	5	3	5	6	0	21	17	28	30	27	22
S．E．	0	1	18	8	2	25	54	0	2	12	4	0	2	0	2	10	10	7	5
S．S．E．	0	7	23	12	3	6	51	2	3	6	1	0	0	2	11	5	10	5	6
South	1	10	6	3	4	4	28	2	3	2	2	0	0	5	1	2	3	6	2
S．S．W．	0	12	9	2	0	0	23	1	3	2	0	2	0	0	5	3	8	3	1
S．W．	0	5	9	0	1	2	17	8	2	3	0	0	0	0	5	2	2	0	0
W．S．W．	1	15	9	1	2	0	28	5	1	2	1	0	0	8	3	0	5	1	2
West	1	2	10	$\stackrel{2}{2}$	1	1	17	1	1	2	0	2	0	0	1	0	7	0	8
W．N．W．	2	18	8	0	2	0	30	1	1	2	4	3	1	0	4	3	7	1	8
N．W．	4	8	7	0	0	0	19	0	2	2	0	1	1	3	4	0	1	5	0
N．N．W．	0	57	40	16	12	1	126	9	9	16	7	3	16	3	31	14	7	5	6
Calm	0	26	19	24	11	8	83	1		1	3	3		20	8	6	12	15	5
Total	51	907	1327	876	459	376	3996	233	204	235	201	188	365	557	526	395	392	420	280
January	6	51	82	66	19	9	233												
February	0	60	54	56	25	9	204												
March	7	45	64	56	26	37	235												
April	0	23	79	49	34	16	201												
May	0	31	41	53	33	30	188												
June	0	73	122	118	31	21	365												
July	9	204	163	81	72	28	557												
August	4	160	208	47	54	53	526												
September	2	110	116	69	23	75	895												
October	6	61	168	62	48	47	392												
November	7	55	115	151	51	41	420												
December	10	34	115	68	43	10	280												
Total	51	907	1327	876	459	376	3996												
Latitude 10° to 15° ，Longitude from Greenwich 45° to 75° ．																			
	$\stackrel{\circ}{\circ}$	웅	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$		total for the separate months．											
	$\begin{aligned} & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$	$\stackrel{8}{\circ}$	$\begin{aligned} & 8 \\ & \text { in } \end{aligned}$	$\stackrel{\square}{\circ}$													
\％	$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{0}$	\％	8	$\stackrel{\leftrightarrow}{\varrho}$	안													
80	n	®	苐	®ٌ		일	\％	号	官	呂	$\frac{5}{4}$	$\underset{\underset{\lambda}{\dot{\lambda}}}{\text { 皿 }}$	号	合	$\frac{80}{4}$	苞	¢	花	¢ّ
North	17	8	0	0	4	1	30	0	3	6	3	0	2	1	0	2	4	0	．
N．N．E．	55	26	0	2	3	0	86	23	18	14	7	2	1	0	3	4	4	5	5
N．E．	675	277	6	13	23	1	995	57	127	167	153	125	106	68	39	20	26	62	45
E．N．E．	214	119	25	10	9	0	377	16	35	69	63	66	30.	13	14	7	27	21	16
East	107	66	19	17	30	3	242	14	15	40	41	47	9	9	8	18	14	5	22
E．S．E．	37	32	13	6	5	0	93	8	11			7	0	4	8	3	6	10	5
S．E．	31	21	4	3	3	1	63	3	2	5	14	10	1	4	4	7	8	0	5
S．S．E．	11	4	5	1	0	0	21	1	0	0	0	3	0	0	2	9	4	2	0
South	5	4	0	1	，	3	14	0	1	1	3	0	0	0	0	4	4	0	1
S．S．W．	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
S．W．	5	1	0	0	0	1	7	0	0	0	1	1	0	1	0	0	4	0	0
W．S．W．	0	1	0	0	0	1	2	0	0		1	0	0	0	0	0	0	0	0
West W．N．W．	3 2	3 0 0	0	0 0	0	2	8	0	1		2	1	0	0	0	2	0	0	2
N．W．${ }^{\text {W }}$	4	9	1	0	0	0	14	0	0		2	0	0	0	0	0	0	0	2
N．N．W．	5	2	0	0	0	1	＋8	0	1 2	8 2 2	1	1	0	0	0	3 0 0	1	0	4
Calm	10	10	0	0	0	0	20	1	0	3	3	0	0	1	1	7	2	2	0
Total	1182	583	73	53	78	16	1985	123	216	334	305	263	149	101	79	86	104	107	118
January	68	23	16	9	7	0	123												
February ${ }^{\circ}$	140	59	5	6	6	0	216												
March	156	141	8	9	20	0	334												
April	172	110	6	6	0	11	305												
May	175	74	2	0	9	3	258												
June	110	39	0	0	0	0	149												
July	77	21	0	0	3	0	101												
August	67	12	0	0	0	0	79												
September	45	20	9	9	3	0	86												
October	52	32	12	3	5	0	105												
November	69	31	${ }^{3}$	4	0	0	107												
December Total	［ $\begin{array}{r}69 \\ 1182\end{array}$	21 583	12 78	$\begin{array}{r}7 \\ 5 \\ \hline\end{array}$	25 78	$\underset{16}{2}$	118 1985												

'These observations were taken in the months of June and July, 1839.
${ }^{2}$ These observations were taken on board the brig Ocean, partly while lying at anchor at Teneriffe, and partly between there and the Madeiras.

1 Date not known.

1 There are two different records of observations taken at this place, both dated 1888.

- Date uncertain.

${ }^{1}$ Proceedings of British Association.

1 Date uncertain.

1 Date uncertain.

Winds in Germany．－Continued．																			
Herbipolis．${ }^{1}$																			
$\begin{aligned} & \text { 品 } \\ & \text { 范 } \end{aligned}$	$\stackrel{\text { ¢ }}{\stackrel{\text { c }}{\sim}}$	$\stackrel{\text { ® }}{\text { ¢ }}$	梁	$\stackrel{+}{\text {＋}}$		separate moxths of 1785.													
					安	舄	遄	总		莲	$\dot{\text { 灾 }}$	总	总		是	$\underset{\text { B. }}{\substack{\text { Br }}}$	吕	尝	』
North	27	51	501	12067	671	14	13	11		12	4	3	2	2	0	0	7	0	1
N．N．E．		13	6	035	5	0	0	2		11	13	2	2		0	0		1	4
N．E．	10	77	9810	10453	3	7	7	6		3	7	1	0	0	3	2	7	0	10
E．N．E．		18	22	923	23	2	5	0		2	2	0	0	0	1	0	1	3	7
East	126	96	153	9878	8	9	2	7		2	9	0	0	0	16	15	11	1	6
E．S．E．		44		6	7	3	0	0		1	0	1	0	0	2	0	0	0	0
S．E．	116	102	66	3048	8	9	1	7		6	1	0	1	1	5	7	4	3	4
S．S．E．		52	7	3	6	0	0	2		0	0	1	1	1	0	1	1	0	0
South	275	105	46	4927	27	5	1	1		0	1	2	0	0	2	4	1	5	5
S．S．W．		42	22	617	17	0	1	2		0	3	0	1		5	2	1	0	2
S．W．	246	166	23316	16398	8	7	9	3		7	2	1	17		11	7	10	12	12
W．S．W．		41	31	205	51	1	2	1		3	9	15	14		1	0	0	1	4
West	238	134	1902	293322	221	17	23	28		24	24	26	33		36	34	23	34	20
W．N．W．		44	14	85	56	4	2	1		2	9	16	11		1	4	1	2	3
N．W．	32	76	1111	14713		15	9	19		10	4	17	2	2	7	8	13	20	9
N．N．W．		G	6			0	6	3		7	2	5		4	3	5	4	5	1
Tegern See．																			
$\begin{aligned} & \text { í } \\ & \text { 范 } \end{aligned}$	$\stackrel{\text { ¢ }}{\sim}$		$\stackrel{+}{*}$	$\begin{aligned} & \dot{\infty} \\ & \underset{\sim}{8} \end{aligned}$	separate months of 1785.														梁
					运	官		㝘	$\dot{\text { © }}$		官	曾	苍	号	$\stackrel{8}{4}$	$\dot{\square}$			
North	288	238	65	39	0	8	3	4	6	1	9	4	1	2	1	0	31	10	45
N．N．E．		9	19		0	1	2	，	3	2		2	2	2					54
N．E．	76	71	53	39		3	3	3	9	2	3	2	6	1		2	64	10	113
E．N．E．		7	19	15	1	2	0	4	3	0	1	0	1	1	－	2	185		25
East	26	91	42	51	0	4	2	1	3	3	2	11	5	15	5		0	9	35
E．S．E．		6	31	116	6	，		3	4	9	10	12	17	23			78		41
S．E．	162	153	159	131	23	5	1	14	8	10	11	8	14	5			0	13	96
S．S．E．		39	96		12	7	6	${ }^{3}$	10	5	1	6	0	3			51		67
South	160	241	122	71	16	6	14	2	7	${ }_{6}^{6}$	2	4	3	0	5		0	17	55
S．S．W．		${ }^{2}$	16	18	${ }_{14}^{4}$	${ }_{3}^{0}$		${ }_{0}^{0}$	${ }^{3}$	${ }_{6}^{6}$	3	${ }_{2}$	0	0	${ }^{0}$		246		109
S．W． W．S．W．	107	90	34	48 20	14	${ }_{3}$	2	$\stackrel{2}{0}$	1 1	－8	3 3	${ }_{2}^{2}$	1	0 3	6 5		－ 297	16	$\begin{array}{r}105 \\ 74 \\ \hline\end{array}$
West W．	28	39	23		2	2	4	1	0	10	23	19	19	$\stackrel{3}{8}$	18		297	13	74 29
W．N．W．		2	9	53	1	1	4	3	4	${ }^{6}$	${ }^{6}$	12	5	1	5		112		65
N．W．	203	136	274	214	9	34	41	38	25	18	11	9	12	9	7	，	0	12	69
N.N. W.		76	140			11	3	11	6	4	5	1	2	2	0	1			69
Giengen an der Brenz．																			
芴	$\stackrel{\square}{\text { ® }}$		separate months of 1841.																
				菑		䟦		$\stackrel{\rightharpoonup}{4}$	$\dot{\text { 荨 }}$		兑	$\stackrel{\dot{\Delta}}{\stackrel{\rightharpoonup}{5}}$		关			ه́	蘭	®̇
N．		88	1		8	7		19		9	15	6		7		8	1	2	5
N．E．		101	8	14	4	3		18	11	1	3			8		2	7	5	8
E．		110	1	20	0	8		12	20		4			8		7	6	5	5
S．E．		33	8		4	2		1	3	3	0	2		2		2	3	0	6
S．		115	8		5	16		8		8	4	6				9	10	23	9
S．W．		259	37	10	0	18		5	17	7	13	23		12		6	37	35	36
W．		203	18	10	0	25		9	11	1	21	28		22		10	19	14	16
N．W．		167	12	13	3	14		18	14	4	30	19		22		6	4	2	3
Calm																		2	2

Winds in Germany．－Continued．															
Giengen．															
范	$\stackrel{\text { İ }}{\sim}$	separate montis of 1841.													
		袁	亩	旨	安		$\dot{\text { 安 }}$	另	咅	8		$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\substack{\circ}}$	¢	容	ค́
N．	89	1	8	7	20		10	14	7	6		6	2	2	6
N．E．	99	9	12	5	17		10	3	4	8		12	7	3	9
E．	112	1	20	8	12		20	4	3	9		17	8	3	7
S．E．	37	8	4	2	1		3	0	2	2		2	3	4	6
S．	117	8	5	16	8		8	5	6	9		10	10	23	9
S．W．	255	36	10	17	5		17	13	21	12		15	36	37	36
W．	202	18	10	24	9		11	21	29	22		10	19	12	17
N．W．	168	12	15	9	19		14	30	20	22		18	4	2	3
Hof．															
若	－	separate montes of 1841.													
		惖	－	发	家		安	吕	官	4		$\stackrel{\dot{\circ}}{\substack{\circ \\ \hline}}$	®̊	容	คั
N．	71	13	9	4	13		9	10	4	1		2	5	1	0
N．E．	88	1	19	6	16		14	2	4	7		8	3	4	4
E．	59	4	6	1	10		7	2	2	3		15	4	2	3
S．E．	196	8	24	17	15		29	12	9	18		2	13	11	18
S	111	14	5	19	9		7	6	7	8		5	4	12	15
S．W．	179	19	4	14	4		8	13	22	14		7	14	27	33
W．	246	23	8	20	15		12	2	35	22		2	38	27	13
N．W．	135	11	9	22	8		7	24	10	19		9	3	6	7
Carlsruhe．															
边	$\stackrel{\text { ® }}{\text { ¢ }}$	送	鍳	total for ter sbparate months of 1834 and 1835.											
				告	发	$\begin{aligned} & \text { ig } \\ & \text { 苞 } \end{aligned}$	首	$\dot{\boldsymbol{x}}$	号	关	安	$\stackrel{\stackrel{\rightharpoonup}{0}}{\substack{\circ \\ \hline}}$	$\stackrel{\square}{\circ}$	\％	ロั்
		61	68	7	5	8	29	11	13	11	11	10	11	7	6
N．E．	394	366	293	36	42	67	70	58	56	45	48	58	41	67	71
E．	16	25	79	10	4	7	4	3	12	17	10	8	8	16	5
S．E．	9	24	31	10	0	0	2	8	3	5	2	13	5	3	4
S．	13	32	33	5	5	2	3	6	3	12	2	2	9	8	8
S．W．	500	536	408	103	95	67	43	74	78	73	93	72	98	74	74
W．	66	13	137	7	10	23	16	18	10	19	12	10	10	4	11
N．W．	19	38	46	6	7	12	13	8	5	4	8	7	4	1	7

Winds in Germany．－Continued．													
Mergentheim．													
8	$\dot{\sim}$	separate montes of 1841.											
		䰠	－	或	宮	安	官	官	暏	安	¢	$\stackrel{\circ}{8}$	$\dot{8}$
N．	132	6	12	11	24	15	24	11	11	2	5	8	3
N．E．	85	8	15	10	16	2	8	3	5	1	0	9	8
E．	233	11	42	26	21	38	10	9	20	24	5	12	15
S．E．	30	2	0	1	2	2	4	0	4	8	5	6	1
S．	109	13	0	15	4	10	5	7	12	9	14	16	4
S．W．	157	34	9	8	11	12	10	27	7	8	11	9	15
W．	271	13	2	13	8	12	6	30	31	33	46	26	35
N．W．	68	6	4	9	4	2	11	6	3	10	7	4	2
Burglengenfield．													
		separate months of 1843.											
䍖	¢	号	－	苞	家	亩	号	首	安	啇	Ö	\％	คั
N．	71	0	6	3	6	7	6	11	5	18	0	8	1
N．E．	1	0	0	0	0	0	0	0	0	0	0	0	1
E．	405	22	25	62	37	32	17	24	45	34	26	50	31
S．E．	57	16	15	0	2	4	2	2	4	0	8	3	1
S．	66	3	13	6	6	1	7	1	15	0	1	5	8
S．W．	15	2	1	1	1	1	0	2	2	1	2	0	2
W．	． 422	47	22	14	36	48	50	45	22	27	54	21	36
N．W．	$\cdot 47$	－ 3	2	7	2	0	8	8	0	9	2	3	3
Issny．													
		separate montis of 1841.											
\％	安	号	官	吻	家	垵	吕	官	安		¢	安	ロ்
N．	19	4	7	2	2	0	2	0	0	0	0	0	2
N．E．	37	0	3	3	5	7	7	2	3	0	1	3	3
E．	162	11	11	22	18	25	10	7	2	18	7	8	3
S．E．	76	5	12	9	4	3	2	6	6	13	5	3	8
S．	91	15	4	4	4	5	5	10	11	$\begin{array}{r}6 \\ \\ \hline\end{array}$	6	10	11
S．W．	268	24	13	19	22	17	27	32	14	13	30	24	33
W．	54	3	4	1	4	5	5	2	4	8	13	4	1
N．W．	15	0	2	2	1	0	2	2	2	2	0	1	1

13

Winds in Germany．－Continued．													
Tutlingen．													
$\begin{aligned} & \text { © } \\ & \text { did } \\ & \hline 0 \end{aligned}$	－	beparate monthe of 1841.											
		$\underset{\text { a }}{\text { a }}$	$\stackrel{8}{\text { ¢ }}$	号	家	$\dot{\underset{y y}{*}}$	$\begin{aligned} & \dot{\circ} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	宮	官	$\underset{\sim}{\stackrel{\rightharpoonup}{0}}$	®ٌ	\％	セัّ
N．	107	15	4	16	17	10	19	6	13	2	0	5	0
N．E．	95	0	23	6	6	12	14	7	7	12	0	0	8
E．	146	0	8	8	20	21	4	5	13	13	21	33	0
S．E．	13	0	0	2	4	1	3	0	0	3	0	0	0
S．	34	1	0	7	6	7	1	7	2	2	1	0	0
S．W．	207	44	6	21	7	14	8	9	13	19	22	19	25
W．	308	29	11	17	18	22	28	39	22	16	34	29	43
N．W．	185	4	32	16	12	6	13	20	23	23	15	4	17
Badenbach．													
总	$\underset{\sim}{\text { థif }}$	beparate montis of 1842.											
		㡙	－	安	家	$\dot{\boldsymbol{y}}$	吕	官	安	$\underset{\substack { \dot{0} \\ \begin{subarray}{c}{\text { on }{ \dot { 0 } \\ \begin{subarray} { c } { \text { on } } }\end{subarray}}{\substack{0 \\ \hline}}$	\％	安	¢
N．	29									2	2	3	0
N．E．	55	7	4	1	10	11	3	0	5	9	3	2	0
E．	8	0	0	0	0	1	0	1	6	0	0	0	0
S．E．	106	14	18	6	3	7	1	3	9	1	10	11	23
S．	12	0	0	1	0	0	2	3	0	3	1	2	0
S．W．	47	0	4	10	1	3	7	5	3	9	4	1	0
W．	19	0	0	1	0	1	6	1	0	0	2	6	2
N．W．	89	5	2	11	10	7	7	15	6	6	9	5	6
Schussenreid．													
	$\underset{\sim}{\underset{\sim}{\infty}}$	geparate montis of 1841.											
		䍖	通	崽	花	$\dot{\underset{y}{*}}$	号	官	家		8̊	安	คั்
N．	53	6	1	6	4	6	0	0	10	18	1	0	1
N．E．	129	0	24	7	4	35	22	9	2	12	12	0	2
E．	51	0	2	0	0	0	0	0	1	2	15	30	1
S．E．	30	0	0	24	5	0	0	1	0	0	0	0	0
S．	33	6	2	9	4	4	0	1	0	1	0	6	0
S．W．	331	46	20	31	12	28	35	35	22	10	1	54	37
W．	269	12	0	3	51	11	23	12	23	35	52	0	47
N．W．	200	23	35	13	10	17	10	29	34	12	12	0	5

Winds in Holland and Belgium．													
Franeker．													
\％		proportion tor the giparate monthe．											
		宮	官	$\begin{aligned} & \text { ed } \\ & \text { d } \\ & \text { d } \end{aligned}$	官	$\dot{\Delta}$	号	官	安	莒	\％	\％	ฝ்
$\stackrel{N}{\text { N．}}$ ．	2943 14322	20	1111	1896	$\stackrel{263}{1608}$	$\stackrel{456}{1340}$	355 1454	450 583	223	201	53 597	101	150 1081
E．	3482	393	338	454	170	232	125	128	203	580	235	290	334
S．E．	17185	1912	1875	1401	967	1125	553	623	603	1680	2140	2222	2084
S．	4960	427	538	314	202	185	231	285	469	564	680	605	460
S．W．	34263	2580	3854	2150	2460	2186	2107	3427	3690	2797	3060	2818	3134
W．	9555	574	720	762	575	632	1348	1120	1000	824	812	643	545
N．W．	33293	1850	1460	2653	3755	3844	3827	3384	3040	2490	2423	2352	2215
Brussels．													
\％	淢	㐫				proportion for feie beparate montis prow 1772 to 1779.							
						臱	辰	荮	雪宫	\dot{g}		¢	\％
North		20	1036	50	15	2	0	1	3	1	1	0	1
N. N. E.	$\begin{aligned} & 19 \\ & 54 \end{aligned}$	${ }_{5}^{28}$	861	$1{ }^{33}$	3	1	0	1	1	0	0	0	0
N. E. E. E.	$\begin{aligned} & 54 \\ & 93 \end{aligned}$	144	1688	$8{ }^{6}$	0								
East	$\begin{aligned} & 93 \\ & 89 \end{aligned}$	101	2485	$5 \quad 56$	621	2	$1{ }^{1} 4$	4	11	0	32	1	11
E．S．E．	89 26	－9	818	－ 14									
S．E．	26 35	32	681	$1{ }^{27}$	7	0	1	0	01	0	10	1	0
S．S．E．	20	17 40	562 1469	20	13	1	21	0	10	0	01	3	22
S．S．W．	43	49	1997	$7{ }^{6}$	8			0		0	01	3	22
S．W．	158	105	3868	171	150	4	6	4	32	5	45	4	54
W．S．W．	158	158	3739	113									
West	185	221	2129	125	54	4	5	3	26	5	3 5	2	$3{ }^{3} 4$
W．N．W．	75	71 80	1080	－ 56		0	0	1	2	2		0	00
N．W．W．	47 39	21	732	56 30	7						10		00
Utrecht．													
$\begin{aligned} & \dot{8} \\ & \text { 炭 } \end{aligned}$	¢	bipabate months of 1842.											
		号	边	$\begin{aligned} & \text { 边 } \\ & \text { 品 } \end{aligned}$	完	离	号	窝	安	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\circ}}$	\％	$\stackrel{8}{4}$	®
N．	29	0	1	1	5	2	3	6	3	3	2	3	0
N．E．	100	6	1	5	31	8	14	2	11	8	7	6	
E．	111	21	3	2	20	12	9	5	12	11	2	11	
S．E．	68	7	8	3	2	6	0	3	13	5	2	12	7
S．	32	3	2	2	0	1	1	2	1	6	0	${ }_{3}$	11
S．W．	144	15	25	12	0	9	2	6	6	18	20	11	20
W．${ }^{\text {W }}$	150	8	14	17	1	13	19	22	10	5	16	10	15
N．W．	95	1	2	20	1	11	12	16	6	4	13	4	5

1 Date not known.

Winds in France，Spain，and Portugal．

$\begin{aligned} & \text { © } \\ & \text { 免 } \end{aligned}$		Massillia，${ }^{1}$ France．				Hafnia，${ }^{\text {a }}$ France．									Oporto，Portugal．		
		$\underset{\sim}{\infty}$	$\stackrel{+\infty}{\stackrel{\infty}{\sim}}$	$\underset{\sim}{\infty}$		$\stackrel{\underset{\sim}{\infty}}{\infty}$		$\stackrel{\text { வ் }}{\stackrel{\circ}{\infty}}$		$\stackrel{\infty}{\infty}$					安		家
North		2	2	6		27		30		37		61		0			9
N．N．E．		0	0	1		14		12		35		12			0		0
N．E．		14	18	45		48		42		53		94		0	0		1
E．N．E．		0	0	0		16		38		10		5			0		0
East		6	8	5		30		85		45		93		61	2		3
E．S．E．		0	0	0		22		45		36		3			3		4
S．E．		515	492	517		53		84		79		25		4	4		0
S．S．E．		1	0	0		24		39		42		4			0		2
South		0	0	0		59		40		28		95		4	8		6
S．S．W．		0	0	0		26		32		35		19			3		2
S．W．		77	65	49		56		64		66		224		0	16		4
W．S．W．		0	0	0		27		61		46		26			6		2
West		22	60	53		80		98		86		184		0	3		1
W．N．W．		0	1	4		41		79		94		36			5		4
N．W．		409	425	380		84		138		126		163		11	7		13
N．N．W．		0	1	0		20		34		49		23					7
3－4？		0	136	73		108		182		110		39					
Winds in Italy．																	
免	Naples．												Padua．				
	separate months of 1842.												最	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\stackrel{+}{\infty}$	$\stackrel{\sim}{\sim}$
	－$\stackrel{\text { ¢ }}{\text {（ }}$	舄	－	家	嵌	旾	官	$\stackrel{80}{8}$		¢	$\stackrel{\stackrel{\circ}{4}}{8}$	¢ $\stackrel{\text { ¢ }}{ }$					
N．	69	4	$8 \quad 2$	8	3	5	1	9	2	11	3	13	8	216	319	309	333
N．E．	176	26	2613	11	8.	10	6	10	9	16	13	28	7	169	122	135	132
E．	6	0	0	0	0	2	0	0	1	0	1	2	28	146	121	133	177
S．E．	69	6	45	5	12	8	8	1	6	5	5	4	4	75	77	87	96
S．	52	3	15	6	5	5	11	5	5	4	2	0	7	50	40	64	201
S．W．	223	11	7124	22	22	24	29	18	23	14	25	4	12	76	59	65	189
W．	28	1	$0 \mid 5$	0	3	0	1	4	3	3	5	3	21	149	184	145	138
N．W．	105	10	98	8	9	6	6	15	11	9	6	8	3	191	111	168	99
Calm															239		

＇Marseilles．（？）
${ }^{2}$ Harre．（？）

Winds in Switzerland．					Mount St．Gothard．													
									SPARA	\％yo	rhs of	1785					$\stackrel{0}{0}$	
$\begin{aligned} & \text { © } \\ & \text { 范 } \end{aligned}$	$\stackrel{\underset{\sim}{\infty}}{\underset{\sim}{\circ}}$		$\stackrel{\dot{\mathbf{D}}}{\mathbf{\Phi}}$	$\stackrel{\oplus}{\oplus}$	$\stackrel{\text { g }}{\substack{\text { g }}}$	通	$\begin{aligned} & \text { 品 } \\ & \text { an } \end{aligned}$	官	$\dot{\text { g. }}$	$\begin{array}{\|c\|} \hline \stackrel{y}{g} \\ \hline \end{array}$	言	苞	$\stackrel{\stackrel{a}{\circ}}{\substack{\circ}}$	¢	$\stackrel{8}{4}$	$\stackrel{\text { ® }}{\square}$		
North	9	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	9	
N．N．E．	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0		
N．E．	3	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	12	
E．N．E．	1	0	0		0	0	0	0	0	0	0	0	0	0	0	0		
East	8	6	1	17	0	1	0	0	0	0	0	0	6	4	5	1	13	
E．S．E．	17	25	24	43	15	6	0	0	0	0	1	3	8	2	7	1		
S．E．	86	127	262	249	22	9	31	14	24	15	19	18	20	15	15	47	15	
S．S．E．	129	106	18	6	0	4	0	0	0	0	0	0	0	0	1	1		
South	79	144	165	126	18	2	2	9	4	3	9	20	14	9	20	16	2	
S．S．W．	89	39	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
S．W．	27	32	1	0	0	0	0	0	0	0	0	0	0	0	0	0	8	
W．S．W．	2	2	0		0	0	0	0	0	0	0	0	0	0	0	0		
West	7	7	0	1	0	0	1	0	0	0	0	0	0	0	0	0	20	
W．N．W．	200	67		17	3	5	2	1	0	1	2	0	0	2	1	0		
N．W．	345	502	574	585	30	57	54	64	60	68	60	47	35	56	34	20	21	
N．N．W．	59	6	0	1	0	0	0	1	0	0	0	0	0	0	0	0		
Winds in Italy．																		
$\begin{aligned} & \text { © } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	容	＋		$\stackrel{\text { ¢ }}{ \pm}$	separate yenths of 1785.													
				宛	遃	$\begin{aligned} & \text { •e } \\ & \text { 感 } \end{aligned}$	完	$\dot{\ddot{y}}$	号	$\dot{\hat{a}}$	兑	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\substack{2}}$	¢	莯	ロั			
North	230	0234			238	39	22	25	17	21	9	14	10	27	21	19	19	25
N．N．E．	136	6108		150	17	5	11	31	5	16	12	9	7	10	13	14	16	
N．E．	39	937		36	2	4	1	2	1	6	4	3	0	0	8	5	3	
E．N．E．	25	51	1	25	2	3	1	1	1	2	1	1	1	4	5	3	108	
East	21	19		13	0	2	1	1	1	0	1	2	0	3	1	1	180	
E．S．E．	14	416		13	0	2	0	0	0	1	0	0	1	0	3	6	10	
S．E．	33	$3{ }^{42}$		54	4	3	2	3	4	4	4	3	6	3	9	9	0	
S．S．E．	61	178		94	9	11	8	9	10	4	5	5	3	7	8	15	4	
South	73	378		60	2	4	3	3	10	${ }_{6}^{6}$	6	${ }_{6}^{6}$	6	9	2	3	19	
S．S．W．	36	640		31	4	1	6	0	2	2	1	5	4	5	1	0	10	
S．W．	155	5158		171	4	11	19	14	19	10	17	29	24	13	9	12	1	
W．S．W．	115	5129		96	3	6	8	3	8	19	16	12	9	8	2	0	145	
West	25	53		41	0	2	2	5	3	8	10	4	0	1	4	2	470	
W．N．W．	12	210		5	2		3	0	0	0	0	0	0	0	0	0	45	
N．W．	35	58		33	4	6	0	4	5	2	2	2	3	3	2	0	2	
$\underset{3-1}{\text { N. N. W. }}$	71 11	$1{ }^{1} 46$		27	4	2	0	0	3	1	0	2	4	6	3	2	8	

14

Winds in Italy．－Continued．							rma								
		beparate months of 1841.													
递．	守	号	$\begin{aligned} & \stackrel{\circ}{0} \\ & \hline \end{aligned}$		若	$\underset{\underset{y y}{c}}{\underset{\sim}{\circ}}$	品	官	$\dot{0}$		83	${ }_{8}^{\circ}$	هั		
N．	133	16	2	12	24	11	7	7	14	11	10	9	10	9	30
N．E．	119	6	10	13	9	16	10	11	23	4	4	8	5	7	2
E．	201	6	23	11	18	20	19	17	15	25	27	5	15	53	17
S．E．	64	8	3	14	8	5	8	5	1	3	3	3	3	14	0
S．	31	2	1	0	4	2	4	4	1	5	5	2	1	16	4
S．W．	165	15	1	12	8	10	19	30	14	17	18	15	6	7	1
W．	130	10	8	8	8	13	11	12	6	9	8	21	16	13	8
N．W．	236	25	29	23	11	16	12	7	19	16	15	26	37	10	0

Winds at Constantinople，Turkey．

$\begin{aligned} & \text { ⿷匚⿳亠丷⿵冂} \\ & \text { 0i } \end{aligned}$	守		average for tie separate montis．											
			号	\％	号	$\dot{\vec{E}}$	$\dot{\underset{y y}{*}}$	©.	$\stackrel{\vdots}{\leftrightarrows}$	$\dot{\infty}$	$\stackrel{\dot{\circ}}{\stackrel{\circ}{\circ}}$	Ö	$\begin{aligned} & \stackrel{\circ}{z} \\ & \stackrel{\circ}{4} \end{aligned}$	¢
North	3	12	$\frac{1}{2}$	0	0	0	1	0	0	0	0	0	0	6
N．N．E．	2	0	1	0	0	0	0	0	0	0	0	0	0	0
N．E．	447	263	26	36	30	40	35	412	48	49	45	37	$12 \frac{1}{2}$	33 $\frac{1}{2}$
E．N．E．	12	10	1	1	7	1	0	0	0	0	0	0	0	1
East	13	2	0	$2 \frac{1}{2}$	2	0	1	1	0	0	0	0	12	$\frac{1}{2}$
E．S．E．	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S．E．	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S．S．E．	1	0	$\frac{1}{2}$	0	0	0	0	0	0	0	0	0	0	0
South	3	10	$\frac{1}{2}$	0	0	0	0	1	0	0	0	0	12	1
S．S．W．	0	4	0	0	0	0	0	0	0	0	0	0	6	0
S．W．	237	160	292	17	202	18	242	15	14	13	15	25	25	181
W．S．W．	4	1	2	0	0	0	0	0	0	0	0	0	$1{ }_{1}$	${ }^{18}$
West	7	5	1	$\frac{1}{2}$	$\frac{1}{2}$	1	3	1	0	0	0	0	0	$1 \frac{1}{2}$
W．N．W．	0	0	0	0	0	0	0	0	0	0	0	0	0	0
N．W．	3	3	0	0	2	0	0	$\frac{1}{2}$	0	0	0	0	12	0
N．N．W．	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Winds in Turkey in Asia，and on the Mediterranean Sea．

＇Sca breeze．${ }^{2}$ Three of these marked＂Sea breeze．＂

[^11]
affecting the winds in this province, which I will here state. About once a month, ordinarily, we have a strong wind, often violent, from the west, which is the simoom or Samiel from the Arabian desert. It usually continues about three days; and though its noxious properties are much neutralized by its passage over a distance of hundreds of miles, and across the high snowy Koordish Monntains, it is still a warm wind (often hot) here, and very debilitating to men and animals. And it is often so dry and hot here, as.to wither and crisp vegetables." . . . "There is ordinarily, particularly in summer, a morning breéze lasting two-thirds of the day, from the Lake of Ooroomiah, which is about fifteen miles east of us; and an evening breeze, continuing through the night, from the Koordish Mountains on the west." "We have also occasionally (once or more in the course of a month) a warm south wind from the hot plains of Mesopotamia, the nearest point of which is about a hundred miles distant; but this wind is distinct from the simoom that comes to us from the Arabiln desert. At intervals of a few weeks, and sometimes oftener, we have also a cold invigorating wind from the north, which comes down from the mountains of Ararat."
"The daily lake and mountain breezes continue during the warm part of the year with great regularity, except when interrupted by the simooms, usually once in four, five, or six weeks. During this part of the year, there is also much uniformity in the weather, a cloud seldom appearing in the sky.
${ }^{1}$ Situated upon a plain, 813 fect above the level of the sea.

Winds in Siberia．－Continued．													
Bogoslowsk．													
\％	¢	separate months of the tear 1842.											
		寝	－	总	安	$\dot{\ddot{y}}$	$\stackrel{\dot{\circ}}{\stackrel{\circ}{5}}$	菅	苍	菏	\％	叐	ロّ
N ．	404	26	42	70	40	12	46	28	54	24	14	34	14
N．E．	518	4	88	34	56	0	36	88	104	72	22	2	12
E．	178	0	0	0	86	14	2	46	16	10	4	0	0
S．E．	198	0	16	12	26	16	6	36	4	6	20	50	6
S．	514	0	28	30	66	178	86	20	2	10	16	62	16
S．W．	736	8	2	50	38	104	122	42	16	94	110	102	44
W．	802	208	136	62	34	32	70	12	2	52	96	2	96
N W．	766	36	64	66	62	56	68	34	98	126	110	28	18
Calm	1524	214	72	172	72	84	44	186	200	86	104	200	290
Zlatouste．${ }^{1}$													
－		separate nonths of the year．											
	关	号	－	芠	官	$\dot{\text { 玉. }}$	号	兑	曾	$\underset{\substack{\stackrel{\rightharpoonup}{0} \\ \hline}}{\substack{2}}$	¢	范	ஃั்
$\stackrel{N}{\text { N．}}$ E．	21 28	3 1 1	0	0	0	4	5 3	0 1	6 6	0 5	1	1	0
E．	232	18	3	10	22	27	14	43	28	46	8	4	9
S．E．	385	34	18	47	38	48	56	26	38	32	11	22	15
S．	64	5	1	2	4	24	12	5	2	4	2	0	3
S．W．	65	8	1	9	2	19	5	3	13	2	3	0	0
W．	403	73	45	47	46	63	33	39	22	14	14	0	7
N．W．	1022	56	71	68	84	20	－ 68	94	56	85	138	128	154
Calm	700	50	84	65	44	36	44	37	77	52	68	84	59
Barnoule．													
		beparate moxthe of the fear．											
－	弟	家	－	晃	官	$\dot{\vec{y}}$	总	官	安	$\underset{\substack{\stackrel{\rightharpoonup}{\circ} \\ \hline}}{\text { an }}$	¢		คั்
N．	261	30	24	23	35	26	18	15	11	27	44	8	0
N．E．	498	17	26	42	56	70	48	47	63	33	67	13	16
E．	31	2	0	0	0	1	0	4	11	4	3	2	4
S．E．	290	19	32	－ 18	10	13	22	45	42	20	17	29	23
S．	274	19	24	29	20	21	20	14	14	5	20	28	60
S．W．	1000	80	76	89	53	68	95	94	46	118	47	119	115
W．	64	4	8	5	3	5	9	4	9	3	1	9	4
N．W．	182	6	3	7	27	28	11.	8	38	16	16	15	7
Calm	319	70	31	35	36	16	17	17	14	14	33	17	19

[^12]Nertchinsk．

旡	－98	geparate months of tee year．											
		号	¢	递	官	$\dot{\underset{\sim}{\boldsymbol{j}}}$	$\stackrel{\bullet}{\Delta}$	$\dot{\square}$	家	$\begin{aligned} & \stackrel{\dot{\circ}}{\stackrel{\circ}{\circ}} \\ & \dot{\circ} \end{aligned}$	¢ٌ	蓅	¢்
N．	109	5	9	6	11	21	18	10	4	9	11	4	1
N．E．	71	2	5	4	13	6	14	9	3	5	4	6	0
E．	62	0	15	0	11	1	9	3	10	4	2	7	0
S．E．	86	0	14	1	4	1	10	23	26	5	1	1	0
S．	715	10	19	4	2	3	4	11	3	8	3	3	1
S．W．	128	1	13	15	13	13	3	10	22	15	14	3	6
W．	284	19	71	18	31	20	8	15	12	14	21	48	7
N．W．	255	31	25	9	46	22	19	12	20	12	23	23	13
Calm	2064	676	501	129	49	37	35	93	86	48	45	145	220

Yacoutsk．

$\begin{aligned} & \text { ⿷匚⿳山己几⿰㇒⿻土一⿱宀女口 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ゅ. } \\ & \underset{\sim}{\circ} \end{aligned}$	separate months of the pear．											
		号	－	这	呙	家	吕	官	安	$\stackrel{\dot{\omega}}{\stackrel{\rightharpoonup}{\circ}}$	®80	号	$\stackrel{\circ}{\circ}$
N．	308	46	23	9	22	11	24	10	26	5	21	44	57
N．E．	143	1	5	0	13	15	30	25	50	0	2	0	2
E．	35	0	4	0	0	5	8	1	10	1	3	2	1
S．E．	32	0	0	2	0	9	5	2	2	0	10	1	1
S．	62	1	0	2	1	0	6	19	3	24	2	2	2
S．W．	89	2	7	18	4	17	10	9	5	10	2	3	2
W．	363	41	34	49	$\cdot 30$	18	11	19	4	39	43	38	37
N．W．	322	23	14	18	41	48	23	31	21	32	32	21	18
Calm	106	10	15	26	9	1	3	8	3	9	9	9	4

Winds at Pekin，China．

$\begin{aligned} & \text { ⿷匚⿳丨口丨巳口 } \\ & \text { D } \end{aligned}$		$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\stackrel{\circ}{\sim}}$	$\stackrel{\stackrel{\circ}{\circ}}{\mathbf{\omega}}$	$\stackrel{\underset{\sim}{0}}{\substack{0}}$		$\underset{\sim}{\mathbf{\infty}}$	separate months of 1844.											
								嵒	官	递	范	$\dot{\Delta}$	号	官	安	$\stackrel{\stackrel{3}{\circ}}{\substack{\circ \\ \hline}}$	¢	$\stackrel{\circ}{4}$	¢
N．	163	99	83	120	74	60	370	26	23	28	30	28	25	15	35	40	40	53	29
N．E．	92	76	122	82	92	97	276	15	21	16	16	27	38	26	33	23	25	15	21
E．	62	30	35	53	60	45	105	7	5	13	14	12	16	17	5	6	5	1	4
S．E．	70	55	84	38	82	99	233	9	6	27	27	25	34	28	30	19	20	7	1
S．	247	155	252	282	270	271	625	19	24	66	66	81	67	81	93	52	23	35	18
S．W．	23	31	11	20	21	15	448	34	46	39	40	36	28	61	43	39	32	27	23
W．	19	19	19	26	31	13	64	0	11	8	8	3	4	4	0	8	18	0	0
N．W．	45	41	74	92	62	101	623		70	34	33	42	30	15	9	48	66	51	119
Calm							464		54	28	17	20	22	28	23	23	45	79	62

Winds in Hindoostan．																					
		Calcutta．												Patna，Futtehpore，and on the Ganges．							
		total for the separate months．												这	号	官	安				
		乒	$\underset{i=1}{\stackrel{0}{0}}$	兑	定	音		$\stackrel{\dot{5}}{\stackrel{\circ}{5}}$	$\dot{\text { 官 }}$			安	Ф்					$\begin{aligned} & \text { 哀 } \\ & \text { W } \end{aligned}$	¢5ं	安	
N．	95	238	103	46	9	4	0	8	8 －	21	113	332	295	6	0			2			
N．E．	79	132	122	75	33	29	30	20	73			128	126		－	100		5		－	
E．	116	66	154	79	29			177	238			21		76	62	100		54			45
S．E．	143	53	75	176	163	226	159	258	226	266	81	25									
S．	141	37	75	197	326	358	197	198	117	91	73	4	0	1	1	1	6	0		0	0
S．W．	181	74	117	281	284	209	250	230	246	232	165		14								
W．		118	159	79	117	49	90	89	81	71			120	41	57					0	66
N．W．			196		38	33	30	20	20		294	407	414								
Duklum．																					
－	－	$\stackrel{\substack{\text { ¢ } \\ \stackrel{\text { a }}{\sim} \\ \sim}}{\square}$	$\begin{aligned} & \dot{\otimes} \\ & \underset{\sim}{\infty} \end{aligned}$	$\dot{\stackrel{\rightharpoonup}{\circ}}$		TOTAL FOR DIFFER－ ENT HOURS OF THE DAY．				total for the separate months．											
								$\begin{aligned} & \left\lvert\, \frac{4}{0}\right. \\ & 0 \\ & 0 . \\ & 0 . \\ & 0 \\ & i n \end{aligned}$		$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\dot{0}}{\substack{4 \\ 4}}$		范	突	$\underset{\sim}{\Xi}$	音	$\dot{\frac{80}{4}}$	$\underset{\substack{\stackrel{\rightharpoonup}{\circ} \\ \\ \hline}}{ }$	¢ ¢ ¢ ¢	$\begin{aligned} & \stackrel{0}{\circ} \\ & \text { 仿 } \end{aligned}$	¢
N ．	33	14		32		29			0	20	20	9	7	5	1			0	23	17	13
N．E．	32	19	15	22	55	23	57	62	1	26	17	5	10	12	1	0	0	0		28	19
E．	87	147	1941	185	90	130	368	197	8	105	63	79	29	12	1	0	0	0		187	164
S．E．	43	29			11	20		41	0	13	12	1	0	8	5	0	0	0	9	9	46
S．	14	9	12	1	0	14	14	8	8	13	1	2	3	5	2	0	0	1	1		6
S．W．	159	6	13	40	87	55	113	130	7	2	3	3	6	52	87	101	19	26	4	1	1
W．	318	489	419	432	324	357	643	902	80	46	73	156	240	242	241				69	10	13
N. W.	16	14	53	18	21	27	33	51	11	8	14	14	12	35	1	0	0	0	9	7	23
Calm	359	341	320	305	395	847	452	304	117	219	221	178	129	77	81	52	126	114	259	171	142

Winds in Africa．

$\dot{0}$\＃̈Ó	Tripoli．					Bassa Cove．			Cape Palmas．		
	$\begin{aligned} & \text { 品 } \\ & \text { 品 } \end{aligned}$	范	高	品	官	$\underset{\sim}{\dot{0}}$	－	$\dot{\stackrel{\circ}{4}}$	¢	รู่	
North	20	13	4	16	21	4	3	1	0	0	1
N．N．E．	0	2	1	15	1	0	0	0	0	0	0
N．E．	7	9	18	21	22	0	0	0	0	18	1
E．N．E．	1	1	12	5	12	0	0	0	0	0	1
East	8	11	30	21	27	0	6	0	0	0	1
E．S．E．	2	1	3	12	2	0	0	0	0	0	1
S．E．	7	9	10	9	5	0	2	0	0	3	5
S．S．E．	2	1	5	1	4	0	0	0	0	0	0
South	16	16	7	5	2	6	1	0	30	9	1
S．S．W．	2	3	0	0	0	33	0	0	9	0	1
S．W．	14	2	2	0	0	29	48	74	24	33	33
W．S．W．	3	7	1	0	0	0	0	0	9	0	7
West	10	15	3	2	2	9	9	4	0	15	3
W．N．W．	1	0	0	0	0	0	0	0	0	0	1
N．W．	20	19	15	13	13	3	1	0	0	6	9
N．N．W．	3	2	2	1	3	0	0	0	0	0	4
Calm ．	9	8	11	14	11	0	0	0	12	9	18

Winds at Islands in the Pacific and Indian Oceans.
Waioli, Sandwich Islands.

The following series of wind-roses exhibits to the eye the relative predominance of the different winds as given in the preceding abstracts; the width of the shading in the circumference at different points of the compass being proportioned to the time during which winds from those points prevailed. In a few rare localities, and others where there are marked local disturbances, a map of the surrounding country is added, to show the cause of the disturbance.

```
SERIES C.
```

The following Tables show the mean direction ${ }^{1}$ of the wind at each station, where observations have been taken for a complete year or more, and, in some few instances, for a shorter period. The stations are divided into five sections, and in each section they are arranged according to their latitudes, proceeding from north to south. The portions of the northern hemisphere embraced in each section are as follows, viz. :-
1st section. America, east of longitude 87°.
2d " The Atlantic Ocean and its Islands.
3d "
4th " Europe and Africa.
5th " Asia, and the Pacific Ocean.

The fifth column shows the ratio of the progressive motion in the mean direction to the total distance travelled by the wind, being as the numbers in the column to 100 .

Section I.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years ombraced.
1	Igloolik . .	Melville Peninsula	N. $36^{\circ} 18^{\prime} \mathrm{W}$.	42	1
2	Winter Island	near do.	N. 2926 W.	42 $\frac{1}{2}$	1
3	New Herrnhut -	Greenland	N. 8659 E .	32	1
4	Friederichthal, and at sea	Do. and Baffin's Bay	N. 2139 E.?	45?	$1 \frac{1}{3}$
5	Nos. 3 and 4 combined	Do. and Bafn's Bay	N. 6240 E.	19	21
6	Nain . .	Labrador	N. 2555 W.?	50	$\frac{1}{1} \frac{1}{2}$
7	Michipicoton	Lake Superior	S. 1857 W.	$17 \frac{1}{2}$	1
8	St. John's (1840)	Newfoundland	S. 626 W.		1
9	Do. (1841)	Do.	S. 7826 W.		1
10	- Do. (1842)	Do.	S. 8238 W.		1
11	Do. (1843) .	Do.	S. 7427 W.		1
12	No. 8 to No. 11, inclusive	Do.	S. 78 4 W.	18	4
13	Fort Kent . .	Maine	N. 6245 W.	33	1
14	Fort Fairfield	Do.	S. 6552 W.	57	$\cdot 1$
15	Quebec .	Lower Canada	S. 8958 W.	31	7
16	Fort Brady (1823) .	Michigan	S. 5653 W.	16	1
17	Do. (1824) .	- Do.	S. 6455 W .	24	1
18	Do. (1825)	Do.	S. 457 W.	21	1
19	Do. (1827)	Do.	N. 623 W.	12	1
20	Do. (1828)	- Do.	S. 496 W.	5	1
21	Do. (1830) .	Do.	N. $87-2 \mathrm{E}$.	5	1
22	No. 16 to No. 21, inclusive	Do.	S. 6323 W.	9	6
23	Houlton (1829) . .	Maine	N. 1330 E.	10	1
24	Do. (1830)	Do.	N. 2315 E.	18	1

[^13]| No. | Name of Station. | Where situsted. | Mean $\frac{1 i r e c t i o n ~ o f ~}{\text { Wind. }}$ | Rate of Progress. | $\begin{gathered} \text { No. } \\ \text { of yoars } \\ \text { embraced. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | Nos. 28 and 24 combined | Maine | N. $19^{\circ} 38^{\prime} \mathrm{E}$. | 14 | 2 |
| 26 | Mackinaw (1826) | Michigan | S. 8031 W . | 6 | 1 |
| 27 | Montreal (1836) | Lower Canada | S. 8832 W . | 50 | 1 |
| 28 | Do. (1837) | Do. | N. 8813 W . | 45 | 1 |
| 29 30 | No. 27 to ${ }_{\text {29, }}^{\text {(1838 }}$, inclusive | Do. | | 39 44 | 1 |
| 31 | Total of 10 stations . | Lat. 45° to Lat. 50° | S. 817 W . | 16 | 17_{12}^{5} |
| 32 | Windsor | Nova Scotia | N. 4948 W . | 28 | |
| 33 | Malone (1839) | New York State | S. 801 W . | 19 | 1 |
| 34 | Do. (1840) | Do. | S. $73 \quad 3 \mathrm{~W}$. | 23 | 1 |
| 35 | Do. (1842) | Do. | S. 8331 W . | 66 | 1 |
| 36 | No. 33 to No. 35, inclusive | Do. | S. 8026 W . | 34 | 3 |
| 37 | Eastport (1822) | Maine | S. 8222 W . | 29 | 1 |
| 38 | Do. (1823) | Do. | S. 8410 W . | 26 | 1 |
| 39 | Do. (1824) | Do. | S. 8840 W . | 27 | 1 |
| 40 | Do. (1825) | Do. | S. 8812 W . | 28 | 1 |
| 41 | Do. (1826) . | Do. | S. 5813 W. | 28 | 1 |
| 42 43 | No. 37 to No. 41, inclusive | $\xrightarrow[\text { Dow York State }]{\text { Di }}$ | S. 8012 l W. | 26 | 5 |
| 44 | Plattsburg (1841) | New York State Do. | S. $85 \quad 57 \mathrm{~W}$. | 27 | 1 |
| 45 | Do. (1847) . . | Do. | N. 8456 W . | 23! | 1 |
| 46 | Do. (1841, 42, 47) | Do. | S. 7646 W . | $24 \frac{1}{2}$ | 3 |
| 47 | Hampden (1844) . . | Maine | S. 8031 W . | 30 | 1 |
| 48 | Do. (1845) | Do. | S. 7727 W . | 33 | 1 |
| 49 | Do. (1846) . . | Do. | S. 6868 W . | 39 | 1 |
| 50 | No. 47 to No. 49, inclusive | Do. | S. 7715 W. | 33 | 3 |
| 51 | Potsdam . | New York State | S. 6659 W. | 36 | 11 |
| 52 | No. 37 to No. 51, inclusive | Lat. $44 \frac{1}{2}^{\circ}$ to Lat. 444° | S. 7100 W . | 29 | 26 |
| 53 | Gouverneur | New York State | S. 7624 W. | 611 | 7 |
| 54 | Bath . (1832) | Maine | S. 6545 W. | | 1 |
| 55 | Do. . (1833) | Do. | N. 8730 W . | | 1 |
| 56 | Do. . (1834) | Do. | S. 6545 W . | | 1 |
| 57 | Do. . (1835) | Do. | S. $78 \quad 7 \mathrm{~W}$. | | 1 |
| 58 | Do. . (1836) | Do. | S. 7754 W. | | 1 |
| 59 60 | Do. . ${ }^{\text {D }}$ (1837) | Do. | S. 86 57
 S. 87 7 | | 1 |
| 61 | Do. . (1839) | D. | S. 8657 W. | | 1 |
| 62 | Do. . (1840) | Do. | S. 8159 W. | | 1 |
| 63 | Do. (1841) | Do. | S. 8847 W . | | 1 |
| 64 | No. 54 to No. 63, inclusive | Do. | S. 820 W . | 26 | 10 |
| 65 | Sackett's Harbor (1842) | New York State | S. 8735 W . | 191 | $1 ?$ |
| 66 | Watertown | Do. | S. 7033 W . | 33 | 1 ? |
| 67 | Lowville | Do. | S. 8931 W . | $23 \frac{1}{2}$ | 8 |
| 68 | No. 54 to No. 67, inclusive | Lat. 433° to Lat. 44° | S. 7646 W. | $22 \frac{1}{2}$ | 19 |
| 69 | Ellisburg . | New York State | S. 6456 W . | 28 | 6 |
| 70 | Hanover . | New Hampshire | N. 8134 W. | 34 | 3 |
| 71 | Portland (1827) . | Maine | S. $52 \quad 9 \mathrm{~W}$. | 21 | 1 |
| 72 | Do. (1828) . | Do. | S. $17 \times 15 \mathrm{~W}$. | 28 | 1 |
| 73 74 | $\begin{array}{lll}\text { Do. } \\ \text { Do. } & (1829) & \text { - }\end{array}$ | Do. | | 30 31 | 1 |
| 74 75 | No. 71 to No. 74, inclusive ${ }^{\text {(1830) }}$ | Do. | $\begin{array}{llll}\text { S. } 77 & 30 & \mathrm{~W} . \\ \text { S. } 42 & 33 & \mathrm{~W} .\end{array}$ | 31 29 | 1 |
| 76 | Toronto . . | Upper Canada | N. 1023 W. | 4 | 2 |
| 77 | Saco (1844) | Maine | N. 8947 W . | 22 | 1 |
| 78 | Do. (1845) | Do. | N. 3854 W. | 24 | 1 |
| 79 | Do. (1846) . | Do. | N. 8435 W. | 20 | 1 |
| 80 | No. 77 to No. 79, inclusive | Do. | N. 6950 W. | 20 | 3 |
| 81 | Nos. 75, 76, 80, 518 comb'd | Lat. $43 \frac{1}{1}{ }^{\circ}$ to Lat. $433^{\frac{3}{\circ}}$ | S. 7730 W . | 201 | 18 |

SERIES C. Section I.-Continued.					
No.	Name of Station.	Where situated.	Mean direetion of Wind.	Rate of Progress.	No. of years embraced.
82	Mexico	New York State	S. $57^{\circ} 24^{\prime} \mathrm{W}$.	$28 \frac{1}{2}$	2
83	Gaines	Do.	N. 7213 W .	32	4
84	Granville . . .	Do.	S. 889 W.	241	4
85	Salem .	Do.	S. 6222 W.	23	3
86	Youngstown (1829-30)	Do.	S. 7737 W.	21	2
87	No. 82 to No. 86, inclusive		S. 7950 W.	24	15
88	Whitesboro' . . .	New York State	S. 8933 W .	271	5
89	Dover (1835)	New Hampshire	N. 7210 W.	30	1
90	Do. (1836)	Do.	N. 622 W.	17	1
91	Do. (1837)	Do.	S. 8914 W.	15	1
92	Do. (1838)	Do.	N. 6514 W.	16	1
93	Do. (1839)	Do.	S. 543 W.	5	1
94	Do. (1842) .	Do.	N. 7731 W.	18	1
95	No. 89 to No. 94, inclusive	${ }_{\text {Do. }}$	N. 7518 W.	162	6
96	Lewistown . . .	New York State	S. 4558 W .	$39 \frac{1}{2}$	2
97	Millville .	Do.	S. 7044 W.	26	5
98	Rochester .	Do.	N. 8932 W.	38	7
99	Utica	Do.	S. 6141 W.	$33 \frac{1}{2}$	12
100	Palmyra	Do.	S. 697 W.	26	1
101	Fairfield	Do.	N. 5551 W.	261	11
102	Cambridge	Do.	S. 4240 W.	$30 \frac{1}{1}$	11
103	Portsmouth (1827)	New Hampshire	S. 8112 W .	22	1
104	Do. (1828)	Do.	S. 6724 W.	23	1
105	Do. (1829)	Do.	S. 70. 39 W.	25	1
106	Do. (1830)	Do.	S. $85-2 \mathrm{~W}$.	14	1
107	No. 103 to No. 106, inclusive	Do.	S. 7450 W.	21	4
108	Syracuse . . .	New York State	S. 7355 W.	40	1
109	Johnstown	Do.	N. 8918 W.	$40 \frac{1}{2}$	10
110	Henrietta .	Do.	S. 5257 W.	36	3
111	No. 88 to No. 110, inclusive	Lat. 43° to Lat. 434°	S. 7315 W.	29	70
112	Onandaga . . .	New York State	S. 678 W.	38	9
113	Pompey.	Do.	S. $66 \quad 48$ W.	52	16
114	Fayetteville \cdot -	Vermont	N. 8518 W.	38	2
115	Port Huron (1831 to 1835)	Michigan	S. 665 W.	24	5
116	Bridgewater . . .	New York State	S. 8441 W.	321	4
117	Cazenovia .	Do.	S. 8752 W .	50	9
118	Canajoharie	Do.	N. 8414 W.	27	3
119	Buffalo .	Do.	S. 5957 W.	52	2
120	Canandaigna	Do.	S. 6250 W .	54	10
121	Middlebury	Do.	S. 7231 W.	56	12
122	Hamilton	Do.	S. 7950 W .	471	10
123	Cherry Valley	Do.	S. 7353 W.	46	9
124	Schenectady	Do.	N. 7342 W.	29	4
125	Lansingburgh	Do.	S. 7952 W .	34	12
126	Cayuga . . .	Do.	S. 5240 W.	26	6
127	No. 112 to No. 126, inclusive	Lat. $423^{\frac{3}{\circ}}$ to Lat: 43°	S. 7510 W.	401	113
128	Watervleit (1831). .	New York State	S. 8637 W.	40	1
129	Williamstown (1816) .	Massachusetts	N. 8844 W.		1
130	Do. (1817).	Do.	S. 8233 W.		1
131	Do. (1818).	Do.	S. 8425 W .		1
132	Do. (1819).	Do.	N. 7455 W.		1
133	Do. (1820).	Do.	N. 8249 W.		1
134	Do. (1821).	Do.	N. 701 W.		1
135	Do. (1822).	Do.	N. 77 3 W.		1
136	Do. (1823).	Do.	N. 8330 W.		1
137	Do. (1824).	Do.	N. 7757 W W.		1
138 139	Do. (1825).	Do.	N. 7530 W.		1
139	Do. (1826).	Do.	N. $83 \quad 49$ W.		1

SERIES C. Section I.—Continued.*

No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced
140	Williamstown (1827)	Massachusetts	N. $77^{\circ} 52^{\prime} \mathrm{W}$.		1
141	Do. (1828)	Do.	S. 760 W .		1
142	Do. (1829)	Do.	N. 8320 W .		1
143	Do. (1830)	Do.	N. 690 W.		1
144	Do. (1831)	Do.	N. 8122 W.		1
145	Do. (1832)	Do.	N. 7339 W.		1
146	Do. (1833)	Do.	S. 802 W.		1
147	Do. (1834)	Do.	N. 8312 W.		1
148	Do. (1835)	Do.	S. 8555 W.		1
149	Do. (1836)	Do.	N. 892 W.		1
150	Do. (1837)	Do.	N. 7859 W.		1
151	Do. (1838) .	Do.	N. 7747 W.		1
152	No. 129 to No. 151, inclusive	Do.	N. 8143 W.	29	23
153	Ipswich	Do.	N. 6655 W .	41	1
154	Albany .	New York State	S. 635 W.	30	12
155	Hartwick	Do.	S. 5920 W.	43	9
156	Homer	Do.	S. 6841 W .	50	6
157	Auburn	Do.	S. 7455 W .	30	11
158	Prattsbarg	Do.	S. 7646 W.	$47 \frac{1}{2}$	1
159	Springville	Do.	S. 8514 W.	44	4
160	No. 128 to No.159, inclusive	Lat. $42 \frac{1}{2}^{\circ}$ to Lat. 423°	S. 8115 W.	38	68
161	Oxford	New York State	S. 8838 W.	451 $\frac{1}{2}$	9
162	Ithaca	Do.	S. 6227 W.	13	7
163	Fredonia .	Do.	S. 6442 W.	401	9
164	Detroit (1839)	Michigan	N. 7310 W.	27	1
165	Do. (1840)	Do.	S. 8828 W.	35	1
166	Do. (1841)	Do.	S. 7540 W .	18	1
167	No. 164 to No. 166, inclusive	Do.	S. 8900 W.	25	3
168	Waltham	Massachusetts	N. 7134 W.	39	1
169	Greenville	New York State	N. 3416 W .	8	1
170	Kinderhook	Do.	N. 6218 W.	14	9
171	Amherst (1837)	Massachusetts	N. 8229 W.	36	1
172	Do. (1838)	Do.	N. 7245 W. -	30	1
173	Do. (1839)	Do.	N. 7025 W.	32	1
174	Do. (1840)	Do.	N. 763 W.	26	1
175	Do. (1841)	Do.	N. 6155 W .	26	1
176	No. 171 to No. 175, inclusive	Do.	N. 7313 W.	30	5
177	Cambridge . . .	Do.	S. 8828 W.?	22	$\frac{11}{12}$
178	Boston - ${ }^{\text {a }}$	Do.	N. 8820 W.	25	$1 \frac{1}{3}$
179	Worcester (1840)	Do.	N. 7741 W.	35	1
180	Do. (1841)	Do.	N. 6310 W.	32	1
181	Do. (1842)	Do.	N. 875 W.	41	1
182	Do. (1843)	Do.	N. 7147 W.	41	1
183	Do. (1844)	Do.	N. 7.417 W.	$37 \frac{1}{2}$	1
184	Do. (1845)	Do.	N. 7459 W.	43	1
185	Do. (1846) .	Do.	N. 5540 W.		1
186	No. 179 to No.185, inclusive	Do.	N. 7329 W.	38	7
187	Delhi	New York State	S. 5859 W.	$29 \frac{1}{2}$	2
188	Hudson . . .	Do.	S. 79.28 W .	3	8
189	No. 161 to No. 188, inclusive		N. 8915 W.	24	634
190	Cuba	New York State	N. 8641 W.	32	3
191	Mendon (1842)	Massachusetts	S. 7435 W.		1
192	Do. (1843-44)	Do.	S. 8249 W.	31	2
193	Do. (1845-46) .	Do.	S. 863 W W.		2
194	No. 191 to No. 193, inclusive	Do. ${ }^{\text {Do }}$	S. 8231 W.	$35 \frac{1}{2}$	5
195	Provincetown	Do. (Cape Cod) New York State	N. 73 S. S2 N 13 W.?	202	8^{172}
197	Salisbury (1844) .	Connecticut	N. 3027 E.	3	1

SERIES C. Section I.-Continued.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
198	Salisbury (1845)	Connecticut	N. $60^{\circ} 9^{\prime} \mathbf{E}$.	9	1
199	Nos. 197 and 198 combined	Do.	N. 537 E .	6	2
200	No. 190 to No. 199, inclusive	Lat. 42° to Lat. 421°	S. 8542 W.	11	$19 \frac{7}{18}$
201	Kingston	New York State	N. 6910 W.	19	9
202	Silver Lake	Pennsylvania	N. 8424 W.	56	13
203	Smithport .	Do.	S. 756 W .	33	1
204	Friend's School, Providence	Rhode Island	N. 8135 W.	32	$2{ }^{7} 7$
205	Brown University, do.	Do.	N. 8633 W.	43	4
206	No. 201 to No.205, inclusive	Lat. 413° to Lat. 42°	N. 870 W.	$35 \frac{1}{2}$	181
207	Brockville	Indiana	S. 605 W.	34	3
208	Poughkeepsie	New York State	S. 1220 E .	112	8
209	Meadville .	Pennsylvania	S. 272 E.	5	1
210	New Bedford	Massachusetts	S. 810 W .	26	16
211	Middletown (1834 and 1843)	Connecticut	N. 6026 W.	43	$1^{\frac{1}{1 \frac{1}{2}}}$
212	Do. (1835) .	Do.	N. 5149 W.	30	$1{ }^{12}$
213	Do. (1836)	Do.	N. 4610 W.	33	1
214	No. 211 to No. 213, inclusive	Do.	N. 5410 W.	35	$21 \frac{1}{2}$
215	Montgomery . . .	New York State	N. 8425 W.	32	10
216	Fort Adams	Rhode Island	S. 313 W.	11	1
217	No. 207 to No. 216, inclusive	Lat. $41 \frac{1}{2}^{\circ}$ to Lat. 413°	S. 7930 W.	17	$41 \frac{1}{1} \frac{1}{2}$
218	Fort Wolcott (1822) .	Rhode Island	S. 7121 W.	33	1
219	Do. (1823)	Do.	N. 8835 W.	27	1
220	Do. (1824)	Do.	S. 8912 W.	28	1
221	Do. (1825)	Do.	S. 8455 W.	28	1
222	Do. (1826)	Do.	S. 777 W .	24	1
223	Do. (1897)	Do.	N. 6751 W.	32	1
224	Do. (1828)	Do.	N. 7940 W.	26	1
225	Do. (1829)	Do.	S. 7833 W.	33	1
226	Do. (1830)	Do.	N. 7246 W.	26	1
227	Newport (1331,32, 33)	Do.	S. 7454 W.	37	1
228	Do. (1838) .	Do.	N. 8717 W.	42	1
229	No. 218 to No. 228, inclusive	Do.	S. 892 W .	30	11.
230	Franklin	Pennsylvania	N. $60 \quad 4 \mathrm{~W}$.	47	1
231	New London (1827)	Connecticut	S. 6541 W.	18	1
232	Do. (1828)	Do.	S. 3644 W.	23	1
233	Nos. 231 and 232 combined	Do.	S. 4955 W.	18	2
234	West Point (1827 to 1830)	New York State	N. 859 W.	18	4
235	Goshen	Do.	S. 6033 W.	44	4
236	North Salem	Do.	N. 6247 W .	23	7
237	New Haven	Connecticut	N. 657 W.	$24 \frac{1}{2}$	4
238	Nantucket	Massachusetts	N. 770 W.	23	$4 \frac{1}{8}$
239	Hudson ${ }^{1}$.	Ohio	S. $88 \quad 33$ W. ${ }^{1}$	53?	7
240	No. 218 to No. 239, inclusive	Lat. $41 \frac{1}{*}^{\circ}$ to Lat. $41 \frac{1}{2}^{\circ}$	N. 8630 W.	26	$44 \frac{1}{3}$
241	Forty-nine different stations	New Eng., S. of Lat. 45°	N. 8737 W.	26	$78 \frac{5}{6}$
242	Mount Pleasant -	New York State	N. 8318 W.	$20 \frac{1}{2}$	7
243	Newburgh	Do.	S. 619 W.	23t	8
244	Easthampton	Long Island, do.	S. 7447 W.	9 ${ }^{\frac{1}{2}}$	11
245	No. 241 to No. 244, inclusive	Lat. 41° to Lat. $41 \ddagger^{\circ}$	S. $76 \quad 45 \mathrm{~W}$.	171	26
246	Stroudsburg	Pennsylvania	N. 7535 W.?	31	$\frac{5}{6}$
247	Butler (1840)	Do.	S. 5547 W.		${ }^{\frac{8}{12}}$
248	Do. (1841)	Do.	S. 6239 W.	26	1
249	Do. (1844-45)	Do.	S. 5258 W .	37	1
250	No. 247 to No. 249, inclusive	Do.	S. 5659 W.	32	$2 \frac{5}{12}$
251	Oysterbay . . .	Long Island, N. Y.	S. 8327 W.	15	2
252	Bloomingdale -	New York State	N. 5852 W.	15	1
253		New Jersey	N. 6653 W.	24	2
254	No. 246 to No. 253, inclusive	Lat. $40 \frac{3^{\circ}}{}$ to Lat. 41°	N. 8754 W.	22	81
255	Deaf and Dumb Institute	New York City	N. 5858 W.	28	3

${ }^{1}$ Upper current.

No.	Name of Station.	Where situated.	Mcan direction of Wind.	Rate of Progress.	No. of years embraced.
256	New York City (Fisher)	New York City	S. $66^{\circ} 56^{\prime} \mathrm{W}$.	21	10
257	Fort Columbus (1822 to 30)	Do.	S. 863 W .	19	9
258	Northumberland . .	Pennsylvania	N. 5332 W.	10	$1{ }^{5}$
259	Easton (1848)	Do.	N. 6418 W .	17	$1{ }^{6}$
260	Jamaica .	Long Island, N. Y.	N. 7032 W .	24	12
261	Flatbush -	Do.	N. $75 \quad 57 \mathrm{~W}$.	29	12
262	Mifflintown	Pennsylvania	N. 5750 W.	311	13
263	Pittsburg .	Do.	N. 8730 W.	23	1
264	Ebensburg	Do.	S. 8121 W.	47	1
265	Huntingdon	Do.	West	41	1
266	No. 255 to No. 265, inclusive	Lat. $40 \frac{1}{2}$ to Lat. 403°	N. 8345 W.	27	$53 \frac{7}{12}$
267	11 stations (1826) .	New York State	S. 6838 W .	30	11
268	23 do. (1827)	Do.	S. 8615 W .	$31 \frac{1}{2}$	23
269	29 do. (1828)	Do.	S. 6244 W.	35	29
270	28 do. (1829)	Do.	S. 7629 W.	35	28
271	34 do. (1830)	Do.	S. 7943 W .	27	34
272	34 do. (1831)	Do.	S. 7642 W .	$35 \frac{1}{2}$	34
273	36 do. (1832)	Do.	S. 6933 W.	29	36
274	35 do. (1833)	Do.	S. 7450 W.	29	35
275	36 do. (1834)	Do.	S. 8012 W .	28	36
276	45 do. (1835)	Do.	S. 7253 W.	331	45
277	39 do. (1836)	Do.	S. 7655 W.	221	39
278	35 do. (1837)	Do.	S. $85 \quad 2 \mathrm{~W}$.	29	35
279	33 do. (1838)	Do.	S. 8556 W.	33	33
280	38 do. (1839)	Do.	S. 8516 W .	29	- 38
281	37 do. (1840)	Do.	S. $80 \quad 7 \mathrm{~W}$.	32	37
282	39 do. (1841)	Do.	S. $88 \quad 0 \mathrm{~W}$.	28	39
283	44 do. (1842)	Do.	S. 7929 W.	30	44
284	40 do. (1843)	Do.	S. 8734 W.	34	40
285	37 do. (1844)	Do.	S. 8216 W.	29	37
286	35 do. (1845)	Do.	S. 8121 W.	37	35
287	34 do. (1846)	Do.	S. 8343 W.	26	34
288	27 do. (1847)	Do.	S. 771 W.	27	27
288 a	25 do. (1848)	Do.	S. 8126 W.	30	25
288 b	23 do. (1849) .	Do.	N. 8824 W.	20	23
289	No. 267 to No. 288 b, incl've	Do.	S. 7949 W.	30	797
290	72 stations ${ }^{1}$. .	Do.	S. 7988 W.	31 $\frac{1}{2}$	362
291	Middletown	New Jersey	S. 8635 W.	22	4
292	Steubenville (1833)	Ohio	N. 852 W.		1
293	Do. (1834)	Do.	N. 8314 W.		1
294	Do. (1835)	Do.	S. 8949 W.		1
295	Do. (1836)	Do.	N. 7817 W.		1
296 297	Do. (1837)	Do.	S. 8543 W.		1
297	Do. (1838)	Do.	N. 8120 W.		1
298	$\begin{array}{ll}\text { Do. } \\ \text { Do. } & (1839) \\ \text { (1840) }\end{array}$	Do.	N. 8118 W.		1
299	Do. (1840)	Do.	N. 8252 W.		1
300	Do. (1841)	Do.	N. 7230 W.		1
301 302	Do. (1842)	Do.	N. 7752 W.		1
302 303	Do. (1843)	Do.	N. 7350 W.		1
303 304	Do. (1844)	Do.	N. 7059 W.		1
304	Do. (1845)	Do.	N. 8350 W.		1
305 306	Do. No. 292 to $\mathrm{No} .305, ~ i n c l u s i v e ~$	Do.	N. 7543 W.		1.
306	No. 292 to No. 305, inclusive	${ }_{\text {Do. }}$	N. 8058 W.	55	1
307 308	Harrisburg . .	Pennsylvania	N. 8256 W.	28	14
308 309	Newtown ${ }^{\text {N }}$ - ${ }^{\text {a }}$ -	$\xrightarrow{\text { Do. }}$ (${ }^{\text {Pata }}$ to Lat 4030	N. 6331 W.	33	14
309 310	No. 291 to No. 308, inclusive Carlisle (1840)	Lat. $40 t^{\circ}$ to Lat. $40 \frac{1}{3}^{\circ}$ Pennsylvania	N. 79 S. 89 80 30	34 19	20.1
311	Trenton . . .	New Jersey	$\begin{array}{llll}\text { S. } \\ \text { S. } & 75 & 52 & \text { W. }\end{array}$	17	6

${ }^{1}$ These stations include all the preceding but two, and seventeen additional ones.

No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Pragress.	No. of years embraced.
312	Itancaster	Pennsylvania	N. $81^{\circ} 55^{\prime} \mathrm{W}$.	19	2
313	Bedford .	Do.	S. 8657 W .	45	1
314	Somerset (1841)	Do.	S. 7440 W .	36	1
315	Do. (1845-46) .	Do.	S. 7232 W .	37	$1 \frac{1}{3}$
316	Nos. 314 and 315 combined	Do.	S. 7327 W.	36⿺𠃊	$2 \frac{1}{3}$
317	No. 310 to No. 316, inclusive	Lat. 40° to Lat. 404°	S. 8150 W.	30	$12 \frac{1}{8}$
318	Girard College . . .	Philadelphia	N. 745 W .	21	5
319	Franklin Institute (1831) .	Do.	S. 7948 W.	53	1
320	Do. (1832)	Do.	S. 6427 W .	46	1
321	Do. (1833)	Do.	S. 7225 W.	48	1
322	Do. (1839)	Do.	S. 8144 W.	39	1
323	Do. (1841)	Do.	S. 8854 W.	36	1
324	Do. (1842) .	Do.	S. $75 \quad 3 \mathrm{~W}$.	45	1
325	No. 319 to No. 324, inclusive	Do.	S. $75 \quad 4 \mathrm{~W}$.	45	6
326	Uniontown . .	Pennsylvania	S. 7443 W.	48	$1^{\frac{11}{12}}$
327	Fort Mifflin (1823)	Do.	N. 501 W.	15	1
328	Do. (1824) .	Do.	S. 3157 W.	36	1
329	Nos. 227 and 328 combined	Do.	S. 5430 W .	18	2
330	Gettysburg . . .	Do.	S. $87 \quad 2 \mathrm{~W}$.	27	18
331	No. 318 to No. 330, inclusive	Lat. 393° to J Lat. $40{ }^{\circ}$	S. 8020 W.	30	$15 \frac{3}{4}$
332	40 different stations . .	Pennsylvania	N. 8815 W.	32	$48 \frac{1}{1} \frac{1}{2}$
333	Newcastle . .	Delaware	S. 5225 W .	28	1
334	Maryland Academy	Baltimore	S. 6754 W.	4	1
335	Fort McHenry . . .	Do.	N. 596 W .	$15 \frac{1}{2}$	5
$335 \frac{1}{2}$	No. 333 to No.335, inclusive	Delaware and Maryland	S. 7448 W.	131	7
336	Marietta	Ohio	S. $68 \quad 23 \mathrm{~W}$.	41	1
337	No. 333 to No. 336, inclusive	Lat. 391° to Lat. 391°	S. 7135 W.	20	8
338	Annapolis . . .	Maryland	S. 4720 W.	16	1
339	Washington (1823)	District of Columbia	N. 792 W .		1
340	Do. (1824)	Do.	N. 8631 W.		1
341	Do. (1825)	Do.	N. 8158 W.		1
342	Do. (1826)	Do.	N. 5659 W.		1
343	Do. (1827)	Do.	N. 647 W.		1
344	Do. (1828)	Do.	S. 5144 W.		1
345	Do. (1829)	Do.	S. 6516 W.		1
346	Do. (1830) .	Do.	S. 8555 W.		1
347	No. 339 to No. 346, inclusive	Do.	N. 86 43 W.	17	9
348	Washington (1831, $2,3,4,5$)	Do.	N. 8341 W .	24	$\frac{1}{8}$
349	Do. (1838, 39, 40,41,42)	Do.	N. 8152 W.	15	$4{ }^{\text {a }}$
350	No. 339 to No. 349, inclusive	Do.	N. 8512 W.	17	132
$350 \frac{1}{2}$	Nos. 338 and 350, combined	Do.	S. 713189 W.	13	$14{ }^{2}$
351	Bellona Arsenal $\dot{0}$.	Near Richmond, Va.	S. 617 W.	151 $\frac{1}{6}$	1
352	Old Point Comfort (1826) .	Virginia	S. 2819 E .	13	1
353	Do. (1827)	Do.	S. 1440 E.	13	1
354	Do. (1828)	Do.	N. 7023 W.	5	1
355	Do. (1829)	Do.	N. 7335 W .	14	1
356	Do. (1830)	Do.	N. 5950 W.	11	1
357	No. 352 to No. 356, inclusive	Do.	S. 4315 W.	3	5
358	14 different stations . .	Del., Md., and E. Vir.	N. 891 W .	13	251
359	Nashville (1839-40)	Tennessee	S. 7431 W.	39	2
360	Do. (1841)	Do.	S. 6413 W .	29	1
361	Do. (1842)	Do.	S. $40 \quad 0 \mathrm{~W}$.	37	1
362	Do. (1843)	Do.	S. 5349 W.	24	1
363	Do. (1844)	Do.	S. 5126 W.	25	1
364	No. 359 to No. 363, inclusive	Do.	S. 5720 W.	30	5
365	Chapel Hill (1845) .	North Carolina	S. 6621 W.	10	1
366 367		Do.	N. 602 W.	3	1
367	Nos. 365 and 366 combined	Do.	S. 765 W .	6	2

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{SERIES C. Seotion I.-Continued.} \\
\hline No. \& Name of Station. \& Where situratod. \& Mean direotion of \& Rate of Progress. \& \[
\begin{gathered}
\text { No. } \\
\text { of yoars } \\
\text { embracoed. }
\end{gathered}
\] \\
\hline 368 \& Beaufort \& North Carolina \& S. \(57^{\circ} 19^{\prime} \mathrm{W}\). \& 13 \& 2 \\
\hline 369 \& Camden \& South Carolina \& N. 8332 W. \& 22 \& 1 \\
\hline 370 \& Abbeville \& Do. \& N. 705 W . \& 8 \& 2 \\
\hline 371 \& Summerville \& Georgia \& N. 5538 W . \& 15 \& 1 \\
\hline 372 \& Athens . (1841 to 1844) \& Do. \& N. 65.12 W . \& 15 \& 1 \\
\hline 373 \& Do. (1845) . \& Do. \& N. 7127 W. \& 35 \& 1 \\
\hline 374 \& Nos. 372 and 373, combined \& Do. \& N. 6730 W . \& 19 \& 5 \\
\hline 375 \& Fort Johnston (1822) \& North Carolina \& N. \(68 \quad 7 \mathrm{~W}\). \& 19 \& 1 \\
\hline \({ }_{376} 7\) \& Do. (1823) \& Do. \& S. 6816 W . \& 16 \& \\
\hline 377
378 \& Do. (1824) \& Do. \& N. 7815 W. \& 10 \& 1 \\
\hline 378
379 \& \begin{tabular}{ll}
Do. \\
Do. \& \((1825)\) \\
\hline
\end{tabular} \& Do. \& \& 25
13 \& 1 \\
\hline 380 \& No. 375 to No. 379 , inclusive \& Do. \& N. 7532 W. \& 15 \& 5 \\
\hline 3801 \& Nos. 374 and 380, combined \& Do. \& N. 713 W . \& 17 \& 10 \\
\hline 381 \& Augusta, Arsenal (1826) \& Georgia \& S. \(26 \quad 2 \mathrm{~W}\). \& 28 \& 1 \\
\hline 382 \& Do. (1827) \& Do. \& S. 888 W. \& 9 \& 1 \\
\hline 383 \& Do. (1828) \& Do. \& N. 8440 W. \& 21 \& 1 \\
\hline 3884 \& Do. (1829) \& Do. \& N. 8349 W . \& 14 \& 1 \\
\hline 385
386 \& \(\begin{array}{cc}\text { Do. } \& (1830) \\ \text { Augusta } \& (1840)\end{array}\) \& Do.
Do. \& \begin{tabular}{ll}
S. \\
N. \& 39 \\
N \& 44 \\
\hline 88 \& W. \\
W.
\end{tabular} \& 23
8 \& 1 \\
\hline 387 \& Do. (1841) \& Do. \& S. 750 E. \& 12 \& 1 \\
\hline 388 \& Do. (1842)? \& Do. \& North \& 1 \& 1 \\
\hline 389 \& Do. (1843) \& Do. \& S. 2829 W . \& 27 \& 1 \\
\hline 390 \& No. 381 to No. 385 , inclusive \& Do. \& S. 5240 W . \& 16 \& 5 \\
\hline 391 \& No. 386 to No. 389 , inclusive \& Do. \& \& 8 \& 9 \\
\hline 392
393 \& No. 381 to No. \({ }^{\text {F }}\) F99, inclusive \& Do. \& S. 3841 W . \& 9 \& 9 \\
\hline 393 \& Fort Moultrie,
Harbor
(1822) Charleston \& South Carolina \& S. \(37 \quad 7 \mathrm{E}\). \& 29 \& 1 \\
\hline 394 \& Do. (1823) \& Do. \& S. 7535 E . \& 31 \& 1 \\
\hline 395 \& Do. (1824) \& Do. \& S. 5326 E . \& 26 \& 1 \\
\hline 396 \& Charleston (1831, 2, 3) \& Do. \& S. 6654 E. \& \& 2 \\
\hline \begin{tabular}{l}
397 \\
398 \\
\hline
\end{tabular} \& \(\begin{array}{ll}\text { Do. } \\ \text { Do. } \& (1834) \\ \text { D. }\end{array}\) \& Do.
Do. \& \(\begin{array}{lll}\text { S. } 28 \& 30 \& \mathrm{E} . \\ \text { S. } 84 \& 22 \& \mathrm{E} .\end{array}\) \& \& 1 \\
\hline 399 \& Do. (1841) \& Do. \& S. 6222 E . \& \& 1 \\
\hline 400 \& Do. (1844) \& Do. \& S. 3132 E . \& \& 1 \\
\hline 401 \& No. 393 to No. 395 , inclusive \& Do. \& S. 5553 E . \& 28 \& 8 \\
\hline 402 \& No. 396 to No. 400 , inclusive \& Do. \& S. 400 E . \& 64 \& 9 \\
\hline 403 \& No. 393 to No. 400, inclusive \& Do. \& S. 50 33 E. \& 14 \& 9 \\
\hline 404 \& Tuskeegee . - \& Alabama \& \(\begin{array}{llll}\text { S. } \& 69 \& 13 \& \mathrm{E} . \\ \text { S. } \& 50 \& 42 \& \mathrm{E} .\end{array}\) \& 221 \& 1t \\
\hline 405 \& \({ }_{\text {Savannah }}^{\text {Oglethorpe Barracks (1834) }}\) \& Georgia
Near Savannah \& \(\begin{array}{llll}\text { S. } \& 50 \& 42 \& \text { E. } \\ \text { S. } 51 \& 48 \& \mathrm{E} .\end{array}\) \& 7
9 \& 3
1 \\
\hline 407 \& St. Augustine (1825) . \& Florida \& N. 6843 E . \& 38 \& 1 \\
\hline 408 \& Do. (1826) \& Do. \& N. 4821 E . \& 29 \& 1 \\
\hline 409 \& Do. (1828) \& Do. \& S. 6433 E . \& 37 \& 1 \\
\hline 410 \& Do. (1830) \& Do. \& S. 8152 E . \& 30 \& 1 \\
\hline 411 \& \(\xrightarrow{\text { Do. }}\) (1835) . \& Do. \& N. 2417 E. \& 11 \& 1 \\
\hline 412 \& No. 407 to No. 411, inclusive \& Do. \& N. 7919 E . \& 25 \& 5 \\
\hline 413
414 \& \(\begin{array}{cc}\text { Fort King } \\ \text { Do. } \& (1833) \\ \text { (1834) }\end{array}\) \& Do. \& \(\begin{array}{ll}\text { S. } \& 12 \\ \text { S. } \& 13 \\ \text { S } \& \text { W } \\ \text { E. }\end{array}\) \& 78 \& 1 \\
\hline 415 \& Do. (1835) \& Do. \& S. 3117 W. \& 5 \& 1 \\
\hline 416 \& No. 413 to No. 415 , inclusive \& Do. \& S. 450 W . \& 17 \& 3 \\
\hline 417 \& Tampa Bay (1825) \& Do. \& S. \(27 \quad 0 \mathrm{E}\). \& 15 \& 1 \\
\hline 418 \& Do. (1826) \& Do. \& S. 1950 W . \& 21 \& 1 \\
\hline 419 \& Do. (1827) \& Do. \& 8. 4733 W . \& \(\stackrel{37}{ }\) \& 1 \\
\hline 420
421 \& Do. \(\quad(1828)\)
Do.
(1830) \& Do.
Do. \& \(\begin{array}{llll}\text { S. } \& 36 \& 52 \& \mathrm{~W} . \\ \text { N. } 50 \& 49 \\ \mathrm{E} .\end{array}\) \& 25
9 \& 1 \\
\hline 421
422 \& Do.
Do.
(1835) \& Do.
Do. \& \& 9

11 \& 1

\hline 423 \& No. 417 to No.422, inclusive \& Do. \& S. 3650 W . \& 11 \& 6

\hline
\end{tabular}

SERIES C. Seotion I.-Continued.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
$423 \frac{1}{2}$	No. 407 to No. 422, inclusive	Florida	S. $38^{\circ} 4^{\prime} \mathbf{E}$.	10	14
424	Cape Florida . . .	Do.	S. 4759 E .	20	1
425	Carysford Reef .	Do.	N. 8225 E.	32	1
426	Indian Key .	Do.	S. 8944 E.	47	1
427	Tortugas Islands	Do.	N. $65 \quad 29 \mathrm{E}$.	48	1
428	Key West . .	Do.	N. 786 E .	38	4
429	No. 424 to No. 428, inclusive	Do.	N. 808 E .	35	8
430	Matanzas	Cuba	N. $60 \quad 39 \mathrm{E}$.	65	4
431	Turk's Island	Bahamas	N. 6446 E. (?)	65	$\frac{1}{12}$
432	Pouce ${ }^{\text {P }}$. . .	Porto Rico	N. 50 2 E.(?)	64	${ }^{1} 12$
433	No. 430 to No. 432, inclusive	West Indies	N. 6031 E .	65	$4 \frac{1}{6}$
434	Barbadoes . .	Do.	N. 8433 E. (?)	89	4
435	Do. (Upper Current) .	Do.	S. 4222 W.(?)	30	$\frac{1}{6}$
436	Chagres and Porto Cabello .	South America	N. 6413 E.(?)	69	$\frac{1}{8}$

SERIES C. Section II.-Atlantic Ocean and its Islands.

${ }^{1}$ Computed from Maury's Charts, 1st edition. The corrections made in the 2 d edition have all been applied in Series B, and the more important ones also in this Series and in Series D. The others are so small as hardly to affect the results officially, so that a re-computation seemed unnecessary.
${ }^{2}$ These results were computed, and the corresponding drawings made, before the reception of Lieutenant Maury's Wind and Current Charts, which afford far more satisfactory data, and it is thought best now to retain them, as they appear to be, for the most part, correct.
${ }^{3}$ Observations at sea, in the vicinity, are combined with those taken for two months at the island in order to complete the year.

SERIES C. Section II.-Continued.						
No.		Name of Station.	Where situated.	Mean direction of Wind.	䓘宮	Time embraced.
23	Funcha	1 (1827)	Madeira Islands	N. $31^{\circ} 51^{\prime} \mathrm{E}$.	42	1 year.
24	Do.	(1828) . .	Do.	N. 949 E .		Do.
25	Nos. 22	, 23, and 24, combined	Do.	N. 2350 E.	45	3 years.
26	No. 25	combined with Teneriffe	Do. and Canary Is.	N. $25 \quad 52 \mathrm{E}$.	46	$3 \frac{1}{1 \frac{1}{2}}$ years.
27^{1}	At sea,	lat. 30° to $35^{\circ} \mathrm{lon} .5^{\circ}$ to $45^{\circ} \mathrm{W}$.	Atlantic Ocean	S. $44 \quad 27$ E.	10	1748 days.
$28{ }^{1}$	Do.	Do. 45° to $75^{\circ} \mathrm{W}$.	Do.	S. 3135 W.	11	2564 do.
29^{1}	Do.	lat. 25° to 30°, lon. 15° to $45^{\circ} \mathrm{W}$.	Do.	N. 6253 E .	26	1622 do.
30^{1}	Do.	Do. 45° to $80^{\circ} \mathrm{W}$.	Do.	S. $79 \quad 4 \mathrm{E}$.	28	1906 do.
$31^{\text {s }}$	Do.	lat. 20° to 30°. ${ }^{\circ}$.	Do.	S. 861 E.(?)	22	4 months.
32^{1}	Do.	lat. 20° to 25°, lon. 15° to $45^{\circ} \mathrm{W}$.	Do.	N. 5020 E. .	58	1331 days.
33^{1}	Do.	Do. 45° to $80^{\circ} \mathrm{W}$.	Do.	N. 7923 E .	55	1573 do.
34^{1}	Do.	lat. 15° to 20°, lon. 15° to $45^{\circ} \mathrm{W}$.	Do.	N. 491 E.	$77 \frac{1}{2}$	1332 do.
35^{1}	Do.	Do. $\quad 45^{\circ}$ to $80^{\circ} \mathrm{W}$.	Do.	N. $68 \quad 43 \mathrm{E}$.	77	1193 do.
36^{9}	Do.	lat. 10° to 20°. ${ }^{\circ}$.	Do.	N. 7051 E.(?)	84	2 months.
37^{1}	Do.	lat. 10° to 15°, lon. 15° to $45^{\circ} \mathrm{W}$.	Do.	N. 5725 E.	66	1850 days.
$38{ }^{1}$	Do.		Do.	N. $59 \quad 55$ E.	82	662 do.
39^{1}	Do.	lat. 5° to 10°, lon. 10° to $55^{\circ} \mathrm{W}$.	Do.	N. $80 \quad 32 \mathrm{E}$.	34	3339 do.
40^{1}	Do.	Do. 30° to $55^{\circ} \mathrm{W}$.	Do.	N. 6688 E.	58	1250 do.
41^{9}	Do.		Do.	N. $795650 .(?)$	85	1 month.
42^{1} 43^{1}	Do. Do.	lat. $\begin{aligned} & 0^{\circ} \text { to } 5^{\circ} \text {, lon. } 15^{\circ} \text { to } 55^{\circ} \mathrm{W} . \\ & \text { Do. }\end{aligned}$	Do. Do.	$\begin{array}{lrr} \text { S. } & 60 & 2 \\ \text { N. } 87 & 55 & \text { E. } \end{array}$	55	$3005 \text { days. }$ $1057 \text { do. }$

SERIES C.-Section III.

No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
1	Hecla Cove and vicinity	Spitzbergen	N. $81^{\circ} 13^{\prime}$ E.(?)	13	${ }_{18}^{58}$
2	Archangel . .	Russia	S. 4742 W .	9	18
3	Holmia? . .	Sweden	N. 8448 W.	12	3
4	St. Petersburg (1818)	Russia	S. 8521 W.	19	1
5	Do. (1830)	Do.	S. 1816 W .	34	1
6	Do. (1831)	Do.	S. 4341 W .	16	1
7	Do. (1832)	Do.	S. 200 W.	24	1
8	Do. (1835-6)	Do.	S. 149 W.	19	1
9	Do. (1836-7)	Do.	S. 221 W.	8	1
10	Do. (date unknown)	Do.	N. 6730 W.	10	20
11	No. 4 to No. 10, inclusive	Do.	S. 8545 W.	9	26
12	Petropolis (St. Petersburg)?	Do.	S. 6129 W.	11	1
13	Spydburg	Norway	S. 86.57 E .	10	2
14	Stockholm	Sweden	N. 852 W.	101	4
15	Dorpat .	Russia	S. 3345 W .	20	1
16	Skagen .	Denmark	S. 4636 W .	20	9
17	Elgin	Scotland	S. 4447 W.	44	3
18	Banff Castle	Do.	S. 247 W.	12	1
19	Castle Toward	Do.	S. 2510 W.	10	2

${ }^{1}$ Computed from Maury's Charts, 1st edition. The corrections made in the $2 d$ edition have all been applied in Series B, and the more important ones also in this Series, and in Series D. The others are so small as hardly to affect the results appreciably, so that a re-computation seemed unnecessary.
${ }^{2}$ These results were computed, and the corresponding drawings made, before the reception of Lieutenant Maury's Wind and Current Charts, which afford far more satisfactory data, and it is thought best now to retain them, as they appear to be, for the most part, correct.

SERIES C. Seotion III.-Continued.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
20	No. 17 to No. 19, inclusive	Scotland	S. $38^{\circ} 0^{\prime} \mathbf{~ W}$.	21	6
21	Wyburg	Denmark	S. 7545 W.	27	1
22	Kinfaun's Castle s	Scotland	S. $59 \quad 9 \mathrm{~W}$.	24	12
23	Cluny Manse . ${ }^{\text {P }}$	Do.	S. $81 \quad 3 \mathrm{~W}$.	25	4
24	Nos. 22 and 23 combined	Do.	S. $70 \quad 6 \quad \mathbf{W}$.	24	10
25	Calton Hill . .	Do.	S. $80 \quad 10$ W.	24	10
26	Inchkeith .	Do.	S. 7138 W.	21	10
27	Cronberg .	Sweden	N. 1748 W.	9	1
28	Kasan	Russia	S. 1018 E.	$24 \frac{1}{2}$	1
29	Moscow . .	Do.	N. 5733 W.	7	5
30	Copenhagen .	Denmark	S. 59 O W.	16	50
31	Bronxholm .	Scotland	West	27	10
32	Carlisle .	England	S. 5631 W.	30	1
33	Londonderry	Ireland	N. 8831 W.	30	1
34	Nos. 32 and 33 combined	Great Britain	S. 7400 W.	29	2
35	Soendmor . . .	Sweden (?)	S. 5917 W.	17	12
36	Christiansae	Denmark	S. 6544 W.	18	8
37	Apenrade .	Do.	N. 6421 W.	8	9
38	Nos. 36 and 37 combined	Do.	S. 8030 W.	12	17
39	Goersdoff . - .	Do. (?)	S. 7818 W.	121	2
40	Total of Sweden ${ }^{1}$		S. $50 \quad 0 \quad \mathrm{~W} .{ }^{1}$	20	
41	Total of Denmark ${ }^{2}$		S. $62 \quad 0$ W. ${ }^{1}$	18	
42	Keswick . .	England	S. 4421 W.	26	5
43	Konigsburg	East Prussia	S. 7125 W.a		?
44	Wilna	Russia	S. 5926 W.	24	1
45	Pillau .	East Prussia	S. 63 35 W.	18	18
46	Braunsburg	Do.	S. 6042 W .	41	1
47	Dantzic -	Do.	S. 687 W.	11	15
48	Hoffmansgave	Do.	S. 3214 W.	20	4
49	Kendal	England	S. 6917 W.	46	6
50	New Malton - .	Do.	S. 695 W.	17	4
51	Isle of Man . .	Irish Sea	S. 6847 W.	2	9
52	Cuxhaven -	Hanover	N. 8739 W.	18	15(?)
53	Stone Light-house ${ }^{\text {a }}$	Germany (?)	S. 54.55 W.		
54	Nos. 52 and 53 combined	Do.	S. 7320 W.(?)	181 $\frac{1}{2}$ (?)	(?)
55	Hamburg - 1816)	Do.	S. 78 S 39 W.	25	30
56	Lancaster (1816)	England	S. 350 W.		1
57	Do. (1817-18)	Do.	S. 5832 W.		1
58	Do. (1819)	Do.	S. 2748 W.		1
59	Do. (1820)	Do.	S. 4766 W.		1
60	Do. (1821) .	Do.	S. 347 W.		1
61	Do. (date unknown)	Do.	S. 3458 W.	31	6
62	No. 56 to No. 60, inclusive	Do.	S. 4011 W .	30	5
63	No. 56 to No. 61, inclusive	Do.	S. 3734 W.	30	11
64 65	Manchester (1801) Do. (1819).	Do.	S. 71.22 W.	26	1
65	Do. (1819) .	Do.	S. 3046 W.		1
66	Do. (1820) .	Do.	S. 38 52 W.		1
67	Do. (1821) .	Do.	S. S. 42 42 56 3		3
68	Do. (date unknown) . ${ }^{\text {No }}$	Do.	S. 4954 W.	35	3
70	Liverpool . . .	Do.	N. 89 2 W.	$17 \frac{1}{2}$	7
71	Nos. 63, 69, and 70 combined	Do.	S. 7715 W.	$27 \frac{1}{2}$	21
72	Luneburg	Hanover	S. 8214 W.	29	15
73	Francker . ${ }^{\text {a }}$	Holland	S. 8129 W.	27	13
74	Mansfield Woodhouse	England	S. 8426 W.	37	10
75	Derby . ${ }^{\text {- }}$	Do.	S. 8311 W.	20	2
76	Southwick	Do.	S. 7729 W.	23	11

No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
77	Alderly Rectory . .	England	S. $21^{\circ} 31^{\prime} \mathrm{W}$.	31	1
78	No. 75 to No. 77, inclusive	Do.	S. 5610 W .	211	14
79	Berlin	East Prussia	S. $78 \quad 17 \mathrm{~W}$.	29	25^{1}
80	Posen	Poland	S. $9 \quad 21$ E.(?)	25 (?)	$\frac{1}{8}$
81	Amsterdam	Holland	S. 6323 W.	16	54
82	Utrecht . . .	Do.	S. $80 \quad 39 \mathrm{~W}$.	13	1
83	Thetford . . .	England	S. 4040 W .	9	1
84	Delphen . .	Do. (?)	S. 6024 W.	8	1
85	Cheltenham . .	Do.	S. 3455 W .	19	1
86	Bushy Heath . .	Do.	S. 7819 W.	17	7
87	High W ycombe .	Do.	N. 8514 W .	22	1
88	No. 83 to No. 87, inclusive	Do.	S. $63 \quad 40$ W.	13	11
89	Mailand . . .	Belgium	N. $61 \quad 4 \mathrm{E}$.	8	?
90	Cork	Ireland	$\begin{array}{ll}\text { N. } 85 & 9 \\ \text { W. }\end{array}$?	?
91	Sagan ${ }^{\circ}$. ${ }^{\text {a }}$.	East Prussia	S. 3559 W.	22	5
92	Breda (1838 at 8 o'cl'k A. M.)	Belgium	S. 6857 W.	16	1
93	Do. (1838 " $1 \frac{1}{2}$ do. P. M.)	Do.	S. 8144 W.	18	1
94	Do. (1839 " 8 do. A.M.)	Do.	S. 5325 W.	19	1
95	Do. (1839 " 2 do. P.M.)	Do.	S. 7039 W.	11	1
96	Do. (1840 " 8 do. A.M.)	Do.	S. 7340 W .	19	1
97	Do. (1840 " 2 do. P.M.)	Do.	S. 9258 W.	23	1
98	Do. (1841 " 8 do. A.M.)	Do.	S. 6243 W.	30	1
$\begin{array}{r}99 \\ \hline\end{array}$	Do. (1841 " 2 do. P.M.)	Do.	S. 7835 W.	34	1
100	Do. (1842 " 8 do. A.M.)	Do.	S. 9510 W.	14	1
101	Do. (1842 " 2 do. P.M.)	Do.	S. $96 \quad 9 \mathrm{~W}$.	15	1
102	Do. (1843 " 8 do. A.M.)	Do.	S. 638 W.	23	1
103	Do. (1843 " 2 do. P.M.)	Do.	S. 7546 W .	20	1
104	No. 92 to No. 103, inclusive	Do.	S. 76 4 $\frac{1}{2}$ W.	20	6
105	Nos. 82, 89, and 104 comb'd	Holland and Belgium	S. 8325 W.	$8 \frac{1}{8}$	$7{ }^{1}$
106	Gottingen . . .	Germany	S. 3531 W .	$9 \frac{1}{2}$	1
107	Do. (date unknown)	Do.	S. 3649 W.	12	?
108	London (1806 to 1818)	England	N. 892 W.	16	13
109	Do. (date unknown) .	Do.	N. 8813 W.	18	12
110	Greenwich (1800 to 1808) .	Do.	S. 8131 W.	5	9
111	Do. (1841) . .	Do.	S. 59.25 W.	42	1
112	Do. (1842) . .	Do.	S. 6144 W.	25	1
113	Nos. 111 and 112 combined	Do.	S. 6014 W.	341	2
114	Bristol . ${ }^{\text {a }}$. .	Do.	S. 1719 W.	11	2
115	No. 108 to No. 114, inclusive	Do.	S. $63 \quad 0 \mathrm{~W}$.	19	38(?)
116	Dusseldorff . . .	West Prussia	N. 1135 W.	3	1
117	Ghent . .	Belgium	S. 6536 W.	22	3
118	Louvain	Do.	N. 6743 W .	$35 \frac{1}{3}$	1
119	Brussels (1772 to 1779)	Do.	S. 6422 W.	39	8
120	Do. (1833 to 1844) .	Do.	S. 3320 W.	10	12
121	Nos. 119 and 120 combined	Do.	S. 5812 W.	24	20
122	Alost ${ }^{\text {a }}$,	Do.	N. 8111 W .	291	2
123	Nos. 116, 117, 118, 121, and 122 combined	Do. and West Prussia	S. 8630 W.	201 $\frac{1}{2}$	27
124	Stunbington ${ }^{\circ}$,	England (?)	N. 6735 W.	43	1
125	Gosport (1816 to 1820) .	Do.	N. 8229 W.	13	5
126	Do. (date unknown)	Do.	N. 8819 W.	14	3
127	Nos. 125 and 126 combined	Do.	N. 8530 W.	$13 \frac{1}{2}$	8 ?
128	Sidmouth . ${ }^{\text {a }}$	Do.	S. 8135 W.	17	2
129	Devonport (1841)	Do.	S. 7919 W.	25	1
130 131	Do. (1842) comined	Do.	S. 7133 W.	8	1
131	Nos. 129 and 130 combined	Do.	S. 7724 W .	17	2
132	Nos. 124, 127, 128, and 131 combined	Do.	West	23	10^{2}

${ }^{1}$ Kaemptz.
${ }^{2}$ Dove.

SERIES C. Section III.-Continued.					
No.	Name of Station.	Where aituated.	Mean direction of Wind.	Rato of Progress.	$\begin{gathered} \text { No. } \\ \text { of yours } \\ \text { embraced. } \end{gathered}$
133	Erfurth (1781, 2, 3, and 4)	Germany	S. $55^{\circ} 10^{\prime} \mathrm{W}$.	17	4
134	Do. (date unknown)	Do.	S. 8648 W .	20	5
135	Nos. 133 and 134 combined	Do.	S. 7230 W .	18	9
136	Hof	Do.	S. 5441 W .	23.	1
137	Nos. 135 and 136 combined	Do.	S. 6330 W .	20련	10
138	Helston (i819 - 1822)	England	S. 8215 W .	15	?
139	Penzance (1819 to 1822)	Do.	S. 6935 W .	18	4
${ }_{140}^{139}$	Do. (date unknown) ${ }^{\text {a }}$	Do.	S. $6246 \mathrm{~W} .{ }^{1}$		4
140	Nos. 138 and 139 combined Total of England .	Do. Do.	$\begin{array}{lll}\text { S. } 76 & 0 & \mathrm{~W} . \\ \text { S. } 66 & 0 \\ \text { d }\end{array}$	16 20	4^{9}
142	Schoenthal .	Austria	S. 418 W .	29	1
143	Prague	Bohemia	S. 5617 W .	37	2
144	Wurtzburg	Bavaria	N. 8039 W.	26	5
145	Herbipolis (Wurtzburg?)	Do.	S. 6645 W.	25	5
146	Uffenheim . .	Do.	S. 8118 W .	28	1
147	No. 144 to No. 146, inclusive	Do.	S. 8230 W .	26	11
148	Cambray ${ }^{\text {a }}$	France	S. 6624 W.	8	2
149	La Chapelle ${ }^{\circ}$	Do.	S. 7738 W.	16	1
150	Hafnia (Havre ?)	Do.	N. 880 W .	14	3
151	Rouen	Do.	S. 8245 W.	22	4
152	Valognes	Do.	N. 7731 W.	26	1
153	No. 150 to No. 152, inclusive	Do.	N. 8630 W.	$20 \frac{1}{4}$	8
154	Manheim (1781, 84, and 85)	Germany	N. 5828 W.	4	3
155	${ }^{\text {Do. }}$ (date unknown)	Do.	N. 6446 W.	${ }^{31}$	10
156	Nos. 154 and 155 combined	Do.	N. 6124 W.	4	13
157	Mergentheim	Do.	S. 89 30 W.	11	1
158	Anspach .	Do.	N. $8959 \mathrm{~W} . ?$	12	${ }_{1}^{1}$
160	Carlsruhe	Do.	S. 7319 W.	13	3
161	No. 156 to No. 160, inclusive	Do.	S. 770 W.	13	16
162	Ratisbon	Do.	N. 2720 W.	15	
163	Giengen	Do.	S. 818 W .	27\%	1
164	Do. on the Brenz	Do.	S. 8150 W .	28	1
165	Ingolstadt	Do.	S. 4030 W .	24	1
166	St. Andex	Do.	N. 8521 W.	39	5
167	Stattgard	Do.	S. 3527 E .	7	?
168	No. 162 to No. 167, inclusive	Do.	S. 820 W.	19	$12^{\text {a }}$
169	Paris (1815 to 1826). .	France	S. 6620 W .	23	12
170	Do. (date unknown)	Do.	S. 654 W .	21	15
171	Do. do. ${ }^{\text {d }}$	Do.	S. 7915 W .	12	27
172	Do. (1827 to 1845)	Do.	S. 717 W .	19	19
173	Do. (1846)	Do.	S. 5029 W .	18	1
174	Do. (1847)	Do.	S. 5624 W .	13	1
175	Do. (1806 to 1847)	Do.	S. 6639 W .	20	42
176	Versailles . ${ }^{\text {a }}$	Do.	S. 7047 W .	17	2
177	Nos. 175 and 176 combined	Do.	S. 6833 W .	18!	44
178	Montmorenci	Do.	N. 4811 W.	14	15
179	Saint Lo	Do.	N. 5739 W .	11	3
180	Nos. 178 and 179, combined	Do.	N. 5220 W.	121	18
181	Nancy . .	Do.	N. 7938 W .	15	6
182	Metz	Do.	N. 8319 W .	$12 \frac{1}{1}$	1
183	Strassbarg	Do.	S. 4720 E .	13	20
184	No. 181 to No. 183, inclusive	Do.	S. 7630 W .	6	27
185	Schoessl (?) .	Russia	N. 4644 W .	30	2^{9}
186	Lougan :	Do.	S. 636 E .	17	2(?)
187	Schussenreid	Germany (?)	S. 8926 W .	44	
188	Badenbach	Do. (?)	N. 326 E .	31	1
189	Burglengenfield .	Do. (?)	S. 5853 W .	2	1

SERIES C. Section III.-Continued.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
190	Munich	Germany	S. $59^{\circ} 24^{\prime} \mathrm{W}$.	31	7
191	No. 187 to No. 190, inclusive	Do. (?)	S. 780 W.	181 $\frac{1}{2}$	10
192	Vienna	Austria	N. 6814 W.	20	1
193	Denainvilliers	France	S. 3027 W.	14	31
194	Monachium (?) .	Russia (?)	S. 6645 W.	27	1
195	Tutlingen . .	Germany	N. 7221 W.	35	1
196	Peissenberg	Do.	S. 8019 W.	15	4
197	Tegern See	Do.	N. 3329 W.	6	4
198	Regensbarg	Switzerland	N. 3053 W.	16	7
199	Issny .	Germany	S. 230 W .	39	1
200	No. 195 to No. 199, inclusive	Lat. 474° to Lat. 48°	S. 790 W.	121	17
201	Buda	Austria	N. 6547 W.	31	4
202	Divio (?)	Do. (?)	S. 8137 W .	15	2
203	Graetz	Do.	S. 7558 E. ${ }^{1}$?	1
204	19 stations . .	Southern Germany	S. $82 \quad 4 \mathrm{~W}$.	20	19^{9}
205	Total of Germany .		S. $76 \quad 0 \quad \mathrm{~W} .9$	18	?
206	Do. of Russia and Hungary		N. 87 0 W.a	17	?
207	Do. of France and Netherl'ds		S. 88 0 W.	13	$?$
208	Mount St. Gothard . .	Switzerland	N. 8256 W.	26	4
209	Dijon	France	S. 5520 W .	10	4
210	Syam	Do.	S. 8727 W.	22	2
211	Nos. 209 and 210 combined	Do.	S. 780 W.	151 $\frac{1}{2}$	
212	Bordeaux .	Do.	N. 6321 W.	18	2
213	Padua .	Italy	N. 453 W.	24	4
214	Kerk	Russia (?)	N. 8450 W.	20	2
215	Parma . . .	Italy	N. 2331 W.	19	2
216	St. Zeno . . .	Do. (?)	S. 774 E.	34	1
217	Bologna . ${ }^{\text {a }}$	Do.	N. 8713 W.	34	1
218	No. 215 to No. 217, inclusive	Do.	N. 360 W.	5	4
219	Rodez	France	S. 8851 W.	24	3
220	Orange	Do.	S. 1545 W.	33	14
221	St. Hyppolite	Do.	N. 515 E .	33	13
222	Montpelier . . .	Do.	N. $9 \quad 8 \quad \mathbf{E .}$	31	37(?)
223	No. 219 to No. 222, inclusive	Do.	N. 3820 W.	10	64(?)
224	Toulouse (1747 to 1756) .	Do.	N. 6432 W.	20	10
225	Do. (1839 to 1846) .	Do.	N. 841 W.	37	8
226	Do. (1847) . .	Do.	S. 8319 W.	21	1
227	No. 224 to No. 226, inclusive	Do.	N. 8111 W.	27	19
228	Massilia (Marseilles?) .	Do. (?)	S. $3 \quad 39 \mathrm{E}$.	8	33
229	Marseilles . . .	Do.	N. 6720 W .	36	21
230	Nos. 181 and 182 combined	Do.	N. 7948 W.	34	24
231	Cantabria	Spain (?)	S. 8752 W.	31	1
232	Rome . .	Italy	N. 5217 W.	14	3
233	Constantinople .	Turkey	N. $47 \quad 19 \mathrm{E}$.	27	$17 \frac{7}{15}$
234	Oporto . .	Portugal	S. 8435 W.?	34	${ }_{8}^{17}$
235	Naples .	Italy	N. 8328 W.	11	1
236	Mafra . \quad -	Portugal (??)	N. 300 E .	84	4
237	Gibraltar and vicinity	Spain	N. 38 \mathbf{N}. 18 E.	23	$\frac{1}{17}$
238 239	Tripoli ${ }^{\text {L }}$ - ${ }^{\text {a }}$ -	Barbary	N. 50 S.	241	${ }_{1}^{6}$
239	Liberia and Sierra Leone	Western Africa*	S. 4444 W.?	65	$\frac{1}{2}$

No.	Name of Station.		Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years ombraced.
1	Yacoutsk		Siberia	N. $45^{\circ} 20^{\prime} \mathrm{W}$.	48	1
2	Bogoslowsk	.	Do. (Ural Mountains)	N. 8321 W .	20	1
3	Tobolsk		Do.	S. 6700 W. ${ }^{1}$?	10
4	Nijné Taguilsk .		Do.	S. 7526 W .	37	2
5	Catharinenburg		Do.	S. 6354 W.	32	2
6	Zlatouste .		Do.	N. 5923 W.	26	1
7	Barnoule		Siberia	S. 353 W .	19	1
8	Iluluk .		Aleutian Islands	S. 5415 W .	25	14
9	Nertchinsk		Siberia	N. 7256 W.	19	1
10	Teflis -		Georgia	N. 1730 W.?	21	3
11	Trebizonde		Asia Minor	N. 3740 E.	23	1
12	Erzeroom . -	-	Armenia	N. 533 W .	20	1
13	Pekin (1757 to 1762)	.	China	S. 224 E .	32	6
14	Do. (1844) . .	.	Do.	S. 7422 W.	114	1
15	Smyrna .	-	Asia Minor	N. 85 58 E. ?	29	8
16	Tabreez .	.	Persia	S. 6243 W.?	6 ?	$\frac{1}{8}$
17	Ooroomiah		Do.	S. 755 W.	40	$1 \frac{7}{18}$
18	Tehran .	-	Do.	S. 7734 W.?	42 ?	$\frac{1}{8}$
19	Mediterranean Sea		Eastern part	N. 2439 E.	49	3
20	Beirut . .		Syria	S. 6832 W.	53	$\frac{2}{\frac{2}{8}}$
21	Bahmdun .		Do. (Mt. Lebanon)	S. $8451 \mathrm{~W} . ?$	32	$1 \frac{1}{1}$
22	Bagdad .	-	On the Euphrates	N. 8449 W.	65	1
23	Jerusalem	.	Palestine	N. 2612 W.	62	$1 \frac{1}{6}$
24	Bassora . .		Nearm'th of Euphrates	N. 3729 W.?	7	${ }_{1}^{5}$
25	Sundry stations .	-	On the Ganges	N. 8210 W.?	10	$\frac{1}{8}$
26	Calcutta	.	Hindoostan	S. 2621 W.	13	8
27	Waioli	.	Sandwich Islands	North-east	60	1
28	Oahu		Do.	N. 5157 E . ?	81	${ }^{1} \frac{1}{2}$
29	Duklum		Hindoostan	S. 897 W.	26	5

SERIES C. Section V.-America, West of Longitude 87°.

No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
1	Melville Island .	Arctic Ocean	N. $20^{\circ} 42^{\prime} \mathrm{W}$.	44	1
2	Port Bowen	Near Barrow's Straits	N. 636 E .	271	1
3	Victoria Harbor	Boothia Felix	N. 1730 W .	30	$\frac{1}{2}$
4	Sheriff's Harbor	Do.	N. 6113 W.	23	1
5	Felix Harbor	Do.	N. 262 W.	23	1
6	No. 3 to No. 5, inclusive	Do.	N. 3455 W.	24	$2 \frac{1}{2}$
7	Fort Franklin . .	Great Bear Lake	N. 70 30. E.	25	$1 \frac{1}{3}$
8	Fort Enterprise	100 miles north of Great Slave Lake	N. 3954 E .	14	1
9	Fort Reliance	Great Slave Lake	N. $7215 \mathrm{E}$. ?	151 $\frac{1}{2}$	$\frac{6}{8}$
10	Sitka ..	Russian America	S. $55 \quad 37$ E.	24	1
11	Norway House (1841)	On Nelson's River	N. $8 \quad 22 \mathrm{~W}$.	5	1
12	Do. (1842)	Do.	N. 84393 W.	2	1
13	Do. (1843)	Do.	N. 2548 W.	18	1
14	Do. (1844)	Do.	N. 3921 W.	32	1
15	Do. (1845)	Do.	N. 359 W .	8	1
16	Do. (1846)	Do.	N. 7950 W .	4	1
17	Do. (1847)	Do.	S. 7751 E .	7	1
18	No. 11 to No. 17, inclusive	Do.	N. 2726 W.	8	7

1 Dove.

SERIES C. Seotion V.-Continued.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
19	Fort Vancouver	Oregon	S. $15^{\circ} 37^{\prime} \mathrm{E}$.	41	1
20	Fort Snelling (1822).	Iowa	N. 4914 W.	22	1
21	Do. (1824)	Do.	S. 6822 W.	31	1
22	Do. (1825)	Do.	S. $59 \quad 0 \mathrm{~W}$.	22	1
23	Do. (1826)	Do.	S. 5415 W.	58	1
24	Do. (1827)	Do.	S. 5728 W.	42	1
25	Do. (1828)	Do.	S. 6848 W .	41	1
26	Do. (1829)	Do.	S. 6234 W .	45	1
27	Do. (1830)	Do.	S. 6654 W.	43	1
28	No. 20 to No. 27, inclusive	Do.	S. 669 W.	36	8
29	Green Bay (1822) .	Wisconsin	S. 554 W.	24	1
30	Do. (1823)	Do.	S. 578 W.	15	1
31	Do. (1824)	Do.	S. 5959 W.	11	1
32	Do. (1825)	Do.	S. 7115 W.	15	1
33	Do. (1826)	Do.	S. 7043 W.	29	1
34	Do. (1827)	Do.	S. 8527 W.	29	1
35	Do. (1828)	Do.	S. 5037 W .	2	1
36	Do. (1829)	Do.	S. 18 2 W.	16	1
37	Do. (1830) .	Do.	S. 228 W.	18	1
38	No. 29 to No. 37, inclusive .	Do.	S. 5552 W .	15	9
39	Fort Winncbago (1831, 32, 35, and 36)	Do.	S. 576 W.	$20 \frac{1}{2}$	4
40	Prairie du Chien (1822) .	Do.	N. 8226 W.	19	
401 $\frac{1}{2}$	Do. (1823)	Do.	N. 8412 W .	13	1
41	Nos. 40 and 41, combined .	Do.	N. 839 W.	16	2
42	Fort Atkinson (1841-42) .	Iowa	N. 820 W.	37	2
43 44	Nos. 41 and 42, combined.	Wisconsin and Iowa	N. 8221 W.	221	4
44 45	Fort Laramie	Missouri Territory	Westerly		
45	Sundry stations ${ }^{1}$.	Oregon and California, north of lat. 38°	S. 4936 W.	13	
46	Chicago (1833 to 1836)	Illinois	N. 56 31 W.	12	4
47	Council Bluffs (1822)	On the Missouri River	N. 6123 W.		1
48	Do. (1823)	Do.	S. 655 W.		1
49	Do. (1824)	Do.	S. 2549 E .		1
50	Do. (1825)	Do.	S. 8111 W.		1
51	Do. (1826)	Do.	N. 8054 W.		1
52	No. 47 to No. 51, inclusive	Do.	S. 1735 W.	8	5
53	Nos. 46 and 52 combined	Do.	S. 8521 W.	6	9
54	Rock Island (1827) ${ }^{\text {- }}$	Near Stephenson, Ill.	S. 646 W W.	13	1
55	Do. (1828)	Do.	S. 119 W.	20	1
56	Do. (1829)	Do.	S. 63 E.	7	1
57	Do. (1830) .	Do.	S. 1541 W.	14	1
58	No. 54 to No. 57, inclusive -	Do.	S. 1830 W .	12	4
59	Bloomington (1840)	Iowa	N. 4217 W.	34	1
60	Do. (1843) .	Do.	N. 7819 W.	24	1
61	Do. (1844, 5, and 6) .	Do.	S. 8426 W.	25	3
62	No. 59 to No. 61, inclusive -	Do.	N. 7830 W.	$24 \frac{1}{2}$	5
63	Nos. 58 and 62 combined	On the Mississippi	S. 5924 W.	16	9
64 65	Sundry stations ${ }^{1}$ Fort Leavenworth (1831 to 1834)	Platte River Indian Territory	$\begin{array}{lll}\text { S. } & 54 & 52 \\ \text { S. } \\ \text { S. } \\ \text { 16 } & 55 & \text { W. }\end{array}$	2 27	4
66	St. Louis (1827) -	Missouri	S. 5518 W.	29	1
67	Do. (1828)	Do.	S. 47 41 W.	13	1
68	Do. (1829)	Do.	S. 533 W.	6	1
69	Do. (1830) -	Do.	S. 146 W .	22	1
70	No. 66 to No.69, inclusive .	Do.	S. 3643 W.	12	4
71	Fort Wayne -	Arkansas	S. $229 \mathrm{E}$.	16	2
72	Fort Gibson (1828)	Indian Territory	S. 5418 E.		1

17

[^14]| SERIES C. Section V.-Continued. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Namo of Station. | Where aituatod. | Mean direotion of Wind. | Rate of Progress. | No. of years embraced. |
| 73 | Fort Gibson (1829) | Indian Territory | S. $65^{\circ} 51^{\prime} \mathrm{E}$. | | 1 |
| 74 | Do. (1830) | Do. | S. 6226 E . | | 1 |
| 75 | No. 72 to No. 74, inclusive . | Do. | S. $59 \quad 58$ E. | 47 | 3 |
| 76 | Fort Smith . . | Do. | S. 931 W. | 151 | 3 |
| 77 | Little Rock (1840) ${ }^{\text {a }}$ | Arkansas | S. 5858 W. | 4 | 1 |
| 78 | Fort Towson (1833 to 1840) | On Red River, Ind. Ter. | S. 1748 W. | 29 | 8 |
| 79 | Sundry stations ${ }^{\text {a }}$. | Calif'nia, S. of lat. 38° | S. 5426 W. | 30 | |
| 80 | Vicksburg (1841) | Mississippi | N. $5626 \mathrm{E}$. | 11 | 1 |
| 81 | Do. (1840 and 42) | Do. | N. 5988 E . | 101 | 2 |
| 82 | Nos. 80 and 81 combined . | Do. | N. 5828 E. | 101 | 4 |
| 83 | Natchez (1825) | Do. | S. 544 E. | 16 | 1 |
| 84 | Do. (1826) | Do. | S. 2151 E . | 21 | 1 |
| 85 | Do. (1827) | Do. | S. 3936 E . | 22 | 1 |
| 86 | Do. (1828) | Do. | S. 4920 E. | 20 | 1 |
| 87 | Do. (1829) | Do. | S. $43 \quad 12 \mathrm{E}$. | 23 | 1 |
| 88 | Do. (1830) | Do. | S. 058 W. | 21 | 1 |
| 89 | Do. (1831) | Do. | S. 2858 E. | 14 | 1 |
| 90 | Do. (1832) | Do. | S. 6148 E. | 13 | 1 |
| 91 | Do. (1833) | Do. | S. 5447 E. | 11 | 1 |
| 92 | Do. (1834) | Do. | S. 3342 E. | 9 | 1 |
| 93 | Do. (1835) | Do. | S. 2854 F. | 9 | 1 |
| 94 | Do. (1836) | Do. | S. $17 \quad 0 \mathrm{E}$. | 12 | 1 |
| 95 | Do. (1837) | Do. | S. $28 \quad 30 \mathrm{E}$. | 3 | 1 |
| 96 | Do. (1838) | Do. | S. 2020 E . | 1 | 1 |
| 97 | Do. (1839) | Do. | S. 056 E. | 11 | 1 |
| 98 | Do. (1840) | Do. | S. $22 \quad 1$ E. | 14 | 1 |
| 99 | Do. (1841) | Do. | S. 248 E. | 20 | 1 |
| 100 | No. 83 to No. 99, inclusive | Do. | S. $31-2 \mathrm{E}$. | 13 | 17 |
| 101 | Nos. 82 and 100 combined | Do. | S. 7015 E . | 81 | 21 |
| 101 $\frac{1}{2}$ | Fort Jesup (1823) | Louisiana | S. 033 E . | 27 | 1 |
| 102 | Do. (1824) | Do. | S. 6817 E . | 25 | 1 |
| 103 | Do. (1825) | Do. | S. 8640 E . | 21 | 1 |
| 104 | Do. (1826) | Do. | N. $75 \quad 32 \mathrm{E}$. | 17 | 1 |
| 105 | Do. (1827) | Do. | S. 8445 E . | 26 | 1 |
| 106 | Do. (1828) | Do. | S. $87 \quad 3 \mathrm{E}$. | 15 | 1 |
| 107 | Do. (1829) | Do. | N. 6320 W . | 10 | 1 |
| 108 | Do. (1830) . | Do. | N. 7519 W. | 16 | 1 |
| 109 | No. 101 to No. 108, inclusive | Do. | S. $56 \quad 54 \quad \mathbf{E}$. | 10 | 8 |
| 110 | Mobile | Alabama | S. 1815 E . | 17 | 1 |
| $110 \frac{1}{2}$ | Do. | Do. | S. 2332 E . | 21 | 1 |
| 111 | Nos. 110 and $110 \frac{1}{2}$ combined | Do. | S. 2110 E . | 19 | 2 |
| 112 | Spring Hill College . . | Near Mobile, Ala. | N. $51-34 \mathrm{E}$. | 3 | 1 |
| 113 | No. 110 to No. 112, inclusive | Alabama | S. 2411 E. | 11 | 3 |
| 114 | Baton Rouge (1822) . | Louisiana | S. 1736 W . | 6 | 1 |
| 115 | Pensacola (1822) | Florida | S. 931 E . | | 1 |
| 116 | Do. (1823) | Do. | S. $10 \quad 4 \mathrm{E}$. | | 1 |
| 117 | Do. (1824) | Do. | S. 5518 W. | | 1 |
| 118 | Do. (1826) | Do. | S. 4143 W. | | 1 |
| 119 | Do. (1827) | Do. | S. 2538 W. | | 1 |
| 120 | Do. (1828) | Do. | S. $37 \quad 9 \mathrm{~W}$. | | 1 |
| 121 | Do. (1829) . | Do. | S 0 47 W. | | 1 |
| 122 | No. 115 to No. 121, inclusive | Do. | S. 2348 W. | 19 | 7 |
| 123 | Petite Coquille ${ }^{1}$ (1827) - | Louisiana | S. 6741 E . | 24 | 1 |
| 124 | Do. (1828) | Do. | S. 4957 E . | 8 | 1 |
| 125 | Do. (1829) | Do. | N. 315 E . | 20 | 1 |
| 126 | $\xrightarrow{\text { Do. }}$ (1830) . | Do. | N. 4048 E. | 20 | 1 |
| 127 | No. 123 to No. 126, inclusive Fort Pike | Do. Do. | $\begin{array}{rrrr}\text { N. } 64 & 37 \\ \text { N. } 88 & \mathbf{0} & \mathrm{E} .\end{array}$ | 12 | 4 |

${ }^{1}$ Same as Fort Pike.

SERIES C. Section V.-Continued.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
129	Fort Wood	Louisiana	S. $86^{\circ} 3^{\prime} \mathrm{E}$.	5	3
130	New Orleans (1826)	Do.	N. 5330 E.	19	1
131	Do. (1836)	Do.	N. 1035 E .	7	1
132	Do. (1840)	Do.	S. 3447 E.	14	1
133	Do. (1841)	Do.	S. $45 \quad 15$ E.	4	1
1331	Do. (1842)	Do.	S. 4916 W.	13	1
134	No. 130 to No. 134, inclusive	Do.	S. 7352 E .	41	5
135	Nos. 114, 127, 128, 129, and 135 combined.	Do.	S. 870 E.	61	17
136	Fort Jackson	Do.	S. 6250 E.	29	1
137	Galveston .	Texas	S. 5854 E?	38	$\mathrm{T}^{\frac{1}{2}}$
138	Yucatan	Mexico	North-east		
139	Maxatlan	Do. (west coast)	N. 378 W.??	28	$\frac{1}{8}$

SUPPLEMENT TO SERIES C.
The following, moslly for fractions of a year, were added after the foregoing tables were completed.
Section I.

No.	Name of Station.		Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
437	Addison	- .	Maine	S. $74^{\circ} 1^{\prime}$ W. ?	$19 ?$	1
438	Machias	. .	Do.	N. 8748 W.??	132 $\frac{1}{2}$?	1
439	Owl's Head		Do.	N. 795 W.?	34?	1
440	Steuben .		Do.	S. 5742 W.?	$17 ?$	1
441	South Thomaston		Do.	S. 6854 W.?	$13 ?$	1
442	South-west Harbor	- .	Do.	N. 7646 W.??	7??	1
443	Vinal Haven	.	Do.	S. 62 2 W.?	$17 ?$	1
444	Charlestown	. .	New Hampshire	N. 3612 W.?	$26 ?$	1
445	Keene	. .	Do.	N. 6947 W.?	$43 ?$	1
446	Peterboro'	- .	Do.	N. 6312 W.??	$47 ?$?	1
447	Bennington	- .	Vermont	N. 4625 W.?	49 ?	1
448	Grafton -	- .	Do.	N. 7824 W.?	$31 ?$	1
449	Cabotville .	. .	Massachusetts	N. 7230 W.??	23??	1
450	Medfield .		Do.	N. 8227 W.??	41??	1
451	Northampton	- .	Do.	N. 7058 W.?	37 ?	2
452	Framingham	- .	Do.	N. 806 W.?	42?	1
453	Dartmouth	. .	Do.	N. 73 3 W.?	10?	1
454	Newburyport .	- .	Do.	N. 69 5 W.?	38?	1
455	Little Compton.	..	Rhode Island	S. 8243 W.??	9??	1
456	Point Judith .	$\cdots \quad$.	Do.	S. 6628 W.??	41??	1
457	Leonardsville		New York State	N. 8440 W.??	26??	1
458	Lockport .	- .	Do.	S. 6822 W.?	$37 ?$	1
459	Bethlehem	. \cdot	Pennsylvania	S. 70 43 W.??	26??	2
460	Cochranville	- .	Do.	S. 8612 W.??	229?	1
461	Coudersport	. .	Do.	S. 837 W.?	$26 ?$	1
462	Beaver .	. .	Do.	N. 6327 W.?	44?	1
463	Bellefonte .	. .	Do.	N. 6946 W.?	33 ?	1
464	Cannonsburg	- .	Do.	N. 7155 W.?	41?	1
465	Erie . .	$\cdots \quad$.	Do.	S. 8142 W.??	33??	1
466	Germantown	. .	Do.	N. 4937 W.??	47??	1
467	Greenhill .		Do.	S. 7953 W.??	54??	1
468	Indiana	. .	Do.	S. 7344 W.?	$73 ?$	1

[^15]| SUPPLEMENT TO SERIES C. Section I.-Continued. | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Name of Station. | Where situated. | Mean direction of Wind. | Rate of Progress. | No. of years embraced. |
| 469 | Haverford. | Pennsylvania | N. $53^{\circ} 47^{\prime}$ W.? | 37 ? | 1 |
| 470 | Lewistown | Do. | N. 7749 W.? | 37 ? | 1 |
| 471 | Norristown | Do. | N. 865 W.? | 53 ? | 1 |
| 472 | Pottsville . | Do. | N. 6733 W.? | 48 ? | 1 |
| 473 | Port Carbon | Do. | N. 5514 W.? | $29 ?$ | 1 |
| 474 | Reading . | Do. | N. 585 W.? | 51? | 1 |
| 475 | Rose Cottage | Do. | S. 796 W.?? | 28?? | 1 |
| 476 | Warren - | Do. | S. 5520 W.? | 43? | 1 |
| 477 | Wilkesbarre | Do. | N. 5748 W.?? | 24?? | 1 |
| 478 | West Chester | Do. | N. $7157 \mathrm{~W} . ?$ | 32? | 1 |
| 479 | York . | Do. | N. 5521 W.?? | 45?? | 1 |
| 480 | Cape May . | New Jersey | N. 7215 W.?? | 33?? | 1 |
| 481 | Newark . | Delaware | N. $7552 \mathrm{~W} . ?$ | 39? | 1 |
| 482 | Isthmus | Maryland | N. 514 W.? | 17? | 1 |
| 483 | Gosport . . | Virginia | S. 4114 W.? | 7? | 1 |
| 484 | West Brunswick | Do. | S. 8515 W.? | 34? | 1 |
| 485 | Whitemarsh Island | Georgia | S. $60 \quad 7$ W.? | 22? | 1 |
| 486 | Apalachicola . | Florida | S. 1652 W.?? | 11?? | 1 |
| 487 | Arendale . | Alabama | S. 7351 W.?? | 21?? | 1 |
| 488 | Greenville | Tennessee | S. 6657 W.? | 58? | 1 |
| 489 | Knoxville . | Do. | S. 7635 W.? | 35? | 1 |
| 490 | Danville - | Kentucky | S. 6649 W.? | 53 ? | 1 |
| 491 | Louisville | Do. | S. 6546 W.?? | 33?? | 1 |
| 492 | Paris . | Do. | S. 7040 W.?? | 58?? | 1 |
| 493 | Springdale | Do. | S. 396 W.?? | 23?? | 1 |
| 494 | Bardstown | Do. | S. 7436 W.? | 46 ? | 1 |
| 495 | Ashtabula . | Ohio | N. 8947 W.? | 35 ? | 1 |
| 496 | Cambridge | Do. | S. 7556 W.?? | 43?? | 1 |
| 497 | Chillicothe | Do. | S. 7759 W.? | 37? | 1 |
| 498 | Cincinnati | Do. | N. 8247 W.? | 49 ? | 1 |
| 499 | Columbus . | Do. | S. $89 \quad 3$ W.? | $39 ?$ | 1 |
| 500 | Dayton . | Do. | N. 7811 W.? | 62? | 1 |
| 501 | Granville . | Do. | S. $48 \quad 34$ W.? | 50 ? | 1 |
| 502 | Lancaster . | Do. | S. 6039 W.? | 44 ? | 1 |
| 503 | Lebanon . | Do. | S. 6210 W.? | 40 ? | 1 |
| 504 | New Athens | Do. | S. 8614 W.? | 34 ? | 1 |
| 505 | Ravenna . | Do. | S. 6013 W.?? | 44?? | 1 |
| 506 | Sandusky . | Do. | S. 58 W W.? | 33? | 1 |
| 507 | Zanesville . | Do. | S. $8515 \mathrm{~W} . ?$ | 39 ? | 1 |
| 508 | Brookville | Indiana | N. 8127 W.? | 39 ? | 1 |
| 509 | Greencastle | Do. | S. 6828 W.? | $37 ?$ | 1 |
| 510 | Greensburg | Do. | S. 6031 W.? | 36 ? | 1 |
| 511 | Winnamac | Do. | S. 8223 W.? | 61? | 1 |
| 512 | Presq' Isle | Michigan | N. 6629 W.? | 42 ? | 1 |
| 513 | Ann Arbor | Do. | N. 878 W.?? | 33?? | 1 |
| 514 | Somerville | New York | S. 6137 W . | 30 | 1 |
| 515 | Amenia ${ }^{\circ}{ }^{\circ}$ | Do. | N. 7751 W. | $15 \frac{1}{2}$ | 1 |
| 516 | Newbury (1840 to 1849) | Vermont | N. 8350 W . | 31 | 10 |
| 517 518 | Do. (1823 to 1849) | Do. | N. 6298 W. | 16 | 27 |
| 518 | Biddeford . Houlton . | Maine | S. 7832 W . | 19 | 1 |
| 520 | Houlton | Do. | S. $65 \quad 44 \mathrm{E}$. | 9 | 14 |
| 521 | Portland | Do. | $\begin{array}{llll}\text { S. } & 58 & 46 & \text { W. } \\ \text { S. } 66 & 14 & \text { W. }\end{array}$ | 25 | 12 |
| 522 | Portsmouth | New Hampshire | S. $42 \quad 4 \mathrm{~W}$. | $36 \frac{1}{2}$ | 14 |
| 523 | Boston . | Massachusetts | N. 7436 W. | 20 | 5 |
| 524 | Fort Wolcott | Rhode Island | S. 5311 W. | 361 | 14 |
| 525 | New London | Connecticut | N. 8526 W. | 17 | 7 |
| 526 | Litchfield . | Do. | N. 8132 W . | 231 | 3 |

1 A fraction of a year.

SUPPLEMENT TO SERIES C. Section I.-Continucd.					
No.	Name of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
527	Sackett's Harbor	New York	S. $85^{\circ} 12^{\prime} \mathrm{W}$.	43	2
528	Youngstown .	Do.	N. 8242 W.	25	6
529	Watervliet	Do.	S. 741 W.	28	11
530	West Point	Do.	N. 8423 W.	18	16
531	Fort Columbus	Do.	S. 7946 W .	112	19
532	Fort Wood	Do.	S. 6027 W .	26	2
533	Rouse's Point .	Do.	S. 4950 W.	16	1
534	Plattsburgh Barracks .	Do.	S. 7230 W.	19	2
535	Buffalo do. .	Do.	S. 471 W.	32	2
536	Watertown -	Do.	S. 677 W .	31	4
537	Alleghany Arsenal	Pennsylvania	N. $80 \quad 48 \mathrm{~W}$.	21	7
538	Carlisle Barracks	Do.	N. 831 W .	19	2
539	Fort McHenry .	Maryland	N. $68 \quad 29$ W.	16	12
540	Annapolis .	Do.	S. 5010 W.	$6 \frac{1}{2}$	5
541	Washington .	District of Columbia	N. 7732 W.	81	12
542	Fort Washington	Maryland	S. 282 W.	$44 \frac{1}{2}$	2
543	Old Point Comfort	Virginia	S. 7614 E .	2	17
544	Fort Johnson .	North Carolina	S. 697 W .	9	10
545	Fort Moultrie	South Carolina	S. 6129 E.	13	10
546	Augusta Arsenal	Georgia	S. 5224 W.	18	14
547	Oglethorpe Barracks .	Do.	S. 1142 W .	5	2
548	Nos. 46 and 534 combined.	New York	S. 7438 W .	24	5
549	Nos. 119 and 535 combined	Do.	S. 551 W.	43	4
550	Nos. 263 and 537, combined	Pennsylvania	N. 8420 W.	22	8
551	St. Augustine . . .	Florida	S. $89 \quad 9 \mathrm{E}$.	23	13
552	Tampa Bay	Do.	S. $45 \quad 33 \mathrm{E}$.	7	12
553	Key West Barracks	Do.	N. 7027 E .	$54 \frac{1}{2}$	3
554	Fort King .	Do.	S. 1442 W.	16	5
555	Cedar Keys .	Do.	S. 643 E .	6	1
556	Mackinac .	Michigan	N. 6545 W .	20	8
557	Fort Brady	Wisconsin	N. 496 W.	4	18
558	Fort Gratiot .	Michigan	S. $79 \quad 39 \mathrm{~W}$.	21	9
559	Detroit Barracks . .	Do.	S. 2519 W.	17	3
560	Nos. 167 and 559 combined	Do.	S. 6354 W.	18	6
561	Dearbornville . .	Do.	S. 6153 W.	47	1
562	Nos. 428 and 553 combined	Florida	N. $73 \quad 36 \mathrm{E}$.	46	7
563	Nos. 32 and 533 combined	Lat. $44^{\circ} 57^{\prime}$ to 45°	N. 7750 W.	171 $\frac{1}{2}$	2
564	Easton	Pennsylvania	N. 8519 W .	$24 \frac{1}{2}$	3
565	Seneca Falls	New York	S. 7833 W.	40	1
566	Chillicothe	Ohio	N. 5818 W.	40	1
567	Burlington $\quad \therefore$	Vermont	S. 3257 W.	11	1
568	Nos. 53 and 567 combined	Lat. $44 \pm$ to $44 \frac{1}{1}$	S. 6934 W .	31	8
369	Nightingale Hall ${ }^{1}$. .	South Carolina	S. 1459 E.	1	1

${ }^{1}$ Not represented on the plates.

SUPPLEMENT TO SERIES C.-Section V.					
No.	Namo of Station.	Where situated.	Mean direction of Wind.	Rate of Progress.	No. of years embraced.
140	La Grange College	Alabama	8. $15^{\circ} 4^{\prime} \mathrm{E} . ?$	18 ?	1
141	Mount Vernon .	Do.	N. 1949 W.?	30 ?	1
142	Attakepas .	Louisiana	S. 1234 W.??	47??	1
143	Frank's Island	Do.	N. 8743 E.??	44??	1
144	Washington	Arkansas	S. 41 W.??	35??	1
145	Mount Atlas	Tennessee	S. 7452 W.?	58?	1
146	New Concord	Kentucky	S. $43 \quad 42$ W.??	$46 ? ?$	1
147	Rensalaer .	Indiana	S. 4918 W.??	29??	1
148	Shawneetown	Illinois	N. 5425 W.??	38??	1
149	Juliet -	Do.	S. 5225 W.?	37?	1
150	Macomb	Do.	N. 8247 W.??	30??	1
151	Upper Alton	Do.	N. 6720 W.??	44??	1
151 ${ }^{2}$	Athens .	Do.	S. 6149 W.	31	1
152	Jacksonville	Do.	S. 50 31 W.?	34 ?	1
153	Lac qui parle	Iowa	N. 259 W.??	22??	1
154	Turkey River	Do.	S. 4114 W.??	54??	1
155	East Troy . .	Wisconsin	N. 5430 W.??	68??	1
156	Prairie du Chien	Do.	S. 7753 W .	26	14
157	Fort Winnebago	Do.	N. 566 W.	143	10
158	Fort Snelling .	Minnesota	S. 4224 W.	24	20
159	Green Bay	Michigan	S. 440 W.	15	18
160	Rock Island	Illinois	S. 438 W.	12	8
161	St. Louis	Missouri	S. 550 W.	17	10
162	Little Rock	Arkansas	S. 4856 W .	6	2
163	Fort Towson	Do.	S. 1726 W.	24	10
164	Fort Leavenworth	Indian Territory	S. 1856 W.	23\%	11
165	Fort Gibson	Do.	S. 4738 E.	3	15
166	Fort Jesup	Louisiana	N. 2241 E.	5	20
167	Baton Rouge . -	Do.	S. 3134 E .	12	7
168	New Orleans Barracks	Do.	N. 923 W.	10	5
169	Eutaw (lower current)	Alabama	N. 252 E .	3	1
170	Do. (upper current) .	Do.	S. 842 W.	35	1
171	Nos. 169 and 170 combined	Do.	S. 887 W.	17	1

${ }^{1}$ Fractions of a year.

The following series of maps exhibits to the eye the results contained in the preceding tabular series, and shows by means of the straight arrows the mean direction and rate of progress of the wind in the different regions of the northern hemisphere, as explained on page 9 . The direction of the arrow shows the direction of the resultant, and its length the ratio of the progressive to the total motion of the wind, the unit being one inch. That is, if the wind were to blow constantly in one direction, so that the whole motion would be progressive, it would be represented by an arrow an inch in length.

An interrogation point affixed to an arrow denotes that it is doubtful, either in regard to direction or length, and a double one that it is exceedingly so. One affixed to a dot or number shows that the locality is doubtful. The chief source of uncertainty in the resultants represented by the arrows is the fewness of the observations from which they were deduced. The numbers on the maps correspond with those in the series, and will serve as references.

Plate VII. affords a general synopsis of the whole hemisphere. Every resultant that is at all reliable is represented upon it, either singly, or in combination with others in those sections of country where the stations are too numerous to allow each to be distinctly represented by separate arrows. And in combining different stations, care has been taken to select those having nearly the same latitude, since the investigations show that difference of latitude affects the resultants more than difference of longitude. As thus condensed, a single arrow, in some cases, represents observations for more than a century.

Plate VIII. contains the United States on a larger scale, sufficient to allow all the separate resultants to be exhibited, except in the Eastern and Middle States, where the stations are so numerous that the scale of the map is yet too small to allow them to be represented except in combination as before. This section is drawn upon a still larger scale on Plate IX. Plate X. contains Western Europe on an enlarged scale.

DEDUCTIONS AND REMARKS.

1. In the arctic regions of North America, lying within the polar circle, the mean direction of the wind is about N. N. W. and well defined. This is seen on Plate VII. The arrows, at six out of the seven stations (all except Port Bowen), are nearly parallel, and of a length indicating a progressive motion of about 40 per cent. of the entire distance travelled by the wind. This is a greater ratio than exists in any other part of the world, except within the limits of the trade winds. But it must be borne in mind that it is the relative, and not the absolute progressive motion, that is here considered. The latter may be, and probably is small; so small as to induce Parry and Barrow to believe that a perfect calm exists at the north pole.
2. Between the parallels of latitude 60° and 66° there appears to be a belt of easterly or north-easterly winds. The observations at Great Bear Lake, Great Slave Lake, and Fort Enterprise (Plate VII., Nos. 7, 8, and 9), in the interior of British America indicate this; as also those at the two stations in Greenland, and at Reikiavik in Iceland. At Sitka, in Russian America (No. 10), which is a little farther south, the mean direction is also easterly, and it is not improbable that the southern limit of this belt, instead of coinciding with a parallel of latitude, follows some such course as is represented by the dotted line on Plate VII. and others, viz. a less circle having its pole at about lat. 84° and lon. 105° west from Greenwich. Such a circle, drawn at a distance of $28^{\circ} 20^{\prime}$ from its pole, passes north of all the stations in the eastern hemisphere except Spitzenbergen (see Plate I.), and it is remarkable that there too the mean direction of the wind is easterly, if we may rely on the observations taken by Parry during the few months that he spent there. The observations which have been taken at Alten, in Lapland, and at Hammerfest, in Norway, should show the same result, if the above limit is correctly assigned.
3. Passing south of this circle, we find a zone or belt of westerly winds, about $23 \frac{1}{2}^{\circ}$ in breadth, entirely encircling the globe, and having the pole of its southern as well as its northern limit near the point before mentioned, viz. in latitude 84° north, and longitude 105° west. This zone, which is exhibited in full on Plates I. and VII., and in detached portions on Plates VIII., IX., and X., embraces the southern portion of British America, all of the United States except the extreme southern part, nearly the whole of Europe, and most of the northern half of Asia, and at all the stations from which observations have been obtained, throughout this entire region, and the corresponding parts of the Atlantic and Pacific Oceans, the mean direction of the wind is westerly, with very few exceptions. This will appear from the following more particular statements.
4. Out of two hundred and fifty-one stations in North America, east of the Mississippi, and situated within this belt, all but six have the mean direction of the wind westerly. (See Plates VIII. and IX.) These six are Houlton in Maine, Salisbury in Connecticut, Redhook and Poughkeepsie in New York, Meadville in Pennsylvania, and La Grange College in Alabama, and it is noticeable that three of these places, viz. Salisbury, Redhook, and Poughkeepsie, are within thirty-five miles of each other, and in a region which Plate III. shows to be characterized by strong local disturbances, while La Grange College is located near the limit which divides the westerly from the equatorial winds, and, moreover, the mean direction of its winds was computed from only eight months' observations-a period too short to be relied on. So that the only undoubted and unexplained exceptions are Houlton and Meadville. Out of the 245 stations, at which the mean direction is westerly, at all but 14 it is from some point between N. W. and S. W., and at 210 of them it is within 35° of a due west point, as may be seen by the following state-ment:-

The 14 exceptions among the westerly directions are as follows:-

It is worthy of notice that, in all these exceptions, ${ }^{1}$ the rate of progress is small, and, as a general fact, the farther the mean direction at any place deviates from the ordinary direction in the region where that place is situated, the less is the progressive motion; a fact that will be apparent by inspecting Plates VII. to X., and noticing the shortness of the irregular arrows. Thus, the average rate for all the 251 stations mentioned above is 30 per cent., while for the 14 exceptions among

[^16]18
the westerly directions it averages but 18 per cent., and for the six where the direction is easterly it averages only 10 per cent., viz.:-

Houlton, 9 per cent.	Poughkeepsie, 11	112 per cent.
Salisbury, 6 "	Meadville, 5	5
Redhook, 10¢	La Grange College, 18	18

5. On the Atlantic Ocean, the mean direction of the wind, in the zone we are considering, is more southerly, but more uniform than in the United States. Of the 16 resultants (see Plate VII.), all are westerly, and the entire range between them is but $51^{\circ} 14^{\prime}$, viz. from $\mathrm{N} .84^{\circ} 20^{\prime} \mathrm{W}$. to $\mathrm{S} .44^{\circ} 26^{\prime} \mathrm{W}$. The rate of progress is less than in the United States, being but 20 per cent. of the whole distance travelled by the wind.
6. Out of 142 stations lying in this zone in Europe, 117 have the mean direction from some point between N. W. and S. $30^{\circ} \mathrm{W}$., and most of them are comprised within much narrower limits. (See Plates VII. and X.) Of the 25 exceptions, 13 still have the prevailing direction westerly, leaving but 12 out of 142 in which it is easterly, viz., Spydburg ${ }^{1}$ in Norway, Posen in Poland, Mailand in Belgium, Stuttgard and Badenbach in Germany, Strasburg, St. Hyppolyte and Montpelier in France, Graetz in Austria, St. Zeno in Italy, Kasan on the Volga, in eastern Russia, and Lougan in southern Russia, north of the Black Sea. Several of these stations are not very far from the southern limit of westerly winds, and at some others the irregularity may, perhaps, be accounted for from geographical peculiarities. Thus, Posen is situated on the Wartha, where it runs almost due north, and the mean direction of its winds coincides very nearly with that of the stream. The same is true of Banff Castle (one of the twenty-five exceptions), situated on the Deveron in the north of Scotland. The effect of valleys in modifying the direction of the wind is strikingly exhibited at most of the stations on the Hudson and Mohawk Rivers in the State of New York. (Compare Plates III. and IX.)
7. There are but eight stations in Asia situated in the zone under consideration, and at all these the mean direction is westerly. (See Plate VII.)
8. In that part of the zone which crosses the Pacific Ocean, we have but one station, viz. Iluluk, one of the Aleutian Islands, and there, too, we find the mean direction westerly. (See Plate VII.) The testimony of navigators in the North Pacific ${ }^{2}$ rather corroborates this result, and I have no doubt that the investigations of Lieutenant Maury will do the same. ${ }^{3}$
9. On the American continent, west of the Mississippi, there appears to be more diversity in the mean direction of the wind, yet here it is westerly at 16 stations out of 20 , from which observations have been obtained. The most peculiar feature in this region is the line of southerly winds on the western borders of Arkansas and Missouri. It seems to form a kind of connecting link between the winds of this zone and the south-easterly ones that we find south of it, and, in some degree,

[^17]to favor an idea that has been advanced, that there is a vast eddy extending from the western shore of the Gulf of Mexico to the eastern shore of the Atlantic-that the easterly trade-winds of the Atlantic Ocean, when they strike the American Continent, veer northwardly and then toward the north-east, and thus recross the Atlantic and follow down the coast of Portugal and Africa till they complete the circuit. Though, on the whole, the evidence is against this theory.

We wait with interest for the results of the investigations, now going on under the auspices of the Smithsonian Institution, in Oregon, California, and the territories west of the United States. When they shall be received, no doubt this article will require modification.
10. Near the limits which divide this zone from the polar winds on the north, and from the equatorial on the south (particularly the latter), the progressive motion is very small. The reader will notice the shortness of the arrows in South Carolina, Georgia, Alabama, Mississippi, and other places along the line, as compared with those farther north, on Plates VII. and VIII. The same thing is very noticeable on the Atlantic Ocean, and, in some degree, in Europe. The only material exception in the latter is Mafra, in Portugal, and it is exceedingly doubtful whether that place is properly located. And not only is the progressive motion small, but the direction is very uncertain. The different results obtained at Augusta and Savannah, in Georgia, in different years, could hardly be more diversified, and those of the upper and lower currents at Eutaw, Alabama (Nos. 169 and 170), are almost directly opposite each other. In Pekin, too, in China, which is near the line, the results obtained by the French missionaries in the last century, differ entirely from those of the recent Russian ones, as shown by the two arrows at that place on Plate VII.
11. The progressive motion is less in Europe than in America, as may readily be seen by comparing the length of the arrows.
12. There seems to be some approach to parallelism between the mean direction of the wind in any part of the belt, and the direction in which that part of the belt runs, so that the mean directions incline to make a constant angle with meridians drawn through the pole of the belt. ${ }^{1}$ Thus, the winds are more southerly in the eastern part of the Atlantic than in the western part-more so in western Europe than in America or Asia. In eastern Siberia it is even north-westerly, if we may rely upon the results at Yacoutsk and Nertchinsk, and the prevailing testimony of navigators seems to be that the winds of the extreme North Pacific are also northwesterly, though the observations at Iluluk, south of Behring's Strait, do not indicate it.

The following table shows the latitudes at which the limits of this zone cross the different meridians, at intervals generally of 10°; the direction in which they run reckoned eastwardly, and the region of country, \&c.; where they cross.

[^18]| Longitude. | goutabra limit op polar minds. | | | morthran limit op bquatorial winds. | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Latitade. | Direction. | Place of crossing. | Latitade. | Direction. | Place of crossing. |
| $80^{\circ} \mathrm{W}$. | $56^{\circ} 20^{\prime}$ | S. $84^{\circ} 40^{\prime} \mathrm{W}$. | Hudson's Bay | $32^{\circ} 47^{\prime}$ | S. $86^{\circ} 47^{\prime} \mathrm{W}$. | South Carolina |
| 70 W. | $56 \quad 57$ | S. 8245 W . | Labrador | 3320 | S. 8538 W . | Atlantic Ocean |
| 60 W. | 5742 | S. 812 W. | Off the coast of | 34 | S. 8436 W . | Do. |
| | | | Labrador | $34 \quad 53$ | S. 8345 W . | Do. |
| 50 W. | 5837 | S. 7936 W. | S. W. of Cape | $\begin{array}{ll}35 & 49 \\ 36 & 51\end{array}$ | S. 835 W . | Do. |
| 40 W. | 5936 | S. $78 \quad 29 \mathrm{~W}$. | S. E. of do. | 37 | S. 8223 W . | Do. |
| 30 W. | 6040 | S. 7743 W. | Atlantic Ocean | $38 \quad 55$ | S. 8223 W . | Off coast of Portugal |
| 20 W. | 6145 | S. 7719 W. | Do. (off S. coast | $\begin{array}{ll}39 & 57 \\ 40 & 55\end{array}$ | S. 823837 W. | Spain |
| 10 W. | $62 \quad 46$ | S. 7719 W. | of Iceland) Do. Do. | 40 41 47 | S. 8385 F W. | Mediterranean Sea Turkey |
| 0 | $63 \quad 46$ | S. $77{ }^{43} \mathrm{~W}$. | Do. | 4233 | S. 8436 W . | Black Sea |
| 10 E . | 64 42 | S. 7829 W. | Coast of Norway | ${ }^{43} 10$ | S. 8538 W . | Do. (eastern part) |
| 20 E . | $65 \quad 31$ | S. 7936 W . | Sweden | 43139 | S. 8647 W . | Caspian Sea |
| 30 E . | 66 614 | S. 812 W W. | Lapland | 43 59
 4 | S. 882 W . | Independent Tartary |
| 40 E . | 6647 | S. 8245 W . | Do. | $44 \quad 9$ | S. 8920 W . | Do. |
| 50 E . | ${ }_{6}^{67} \quad 12$ | S. 8440 W. | Arctic Ocean | $44 \quad 10$ | West | Do. |
| 60 E . | 6731 | S. 8644 W . | Do. | 44 | N. 8920 W . | Chinese Tartary |
| 70 E . | 67
 67
 6 | S. 8854 W . | Siberia | 4359 | N. 882 W W. | Do. |
| 75 E. | 6740 | West | - Do. | 43 | N. 8647 W . | Do. |
| 80 E . | 67 69 | N. 8854 F W. | Do. | 4310 | N. 8538 W . | Do. |
| 90 E . | 6731 | N. 8644 W. | Do. | $42 \quad 33$ | N. 8436 W . | China |
| 100 E. | $67 \quad 12$ | N. 8440 W. | Do. | 4147 | N. 8345 W . | Sea of Japan |
| 110 E . | 66 | N. 8245 W. | Do. | 4055 | N. 835 W . | Do. |
| 120 E. | 66 | N. $812{ }^{2} \mathrm{~W}$. | Do. | 39 57
 9 | N. 8237 W. | Pacific Ocean |
| 130 E. | 6531 | N. 7936 W. | Do. | 3855 | N. 8223 W . | Do. |
| 140 E. | 6442 | $\mathrm{N} .78{ }^{29} \mathrm{~W}$. | Do. | $\begin{array}{ll}37 & 54\end{array}$ | N. 8223 W . | Do. |
| 150 E. | ${ }_{6}^{63} 46$ | $\mathrm{N} .77{ }^{73} \mathrm{~W}$. | Do. | $\begin{array}{ll}36 & 51 \\ 35\end{array}$ | N. 8237 W. | Do. |
| 160 E. | 6246 | N. 7719 W. | Do. | 3549 | N. $83 \quad 5 \mathrm{~W}$. | Do. |
| 170 E. | 6145 | N. 7719 W. | Kamtschatka | 3453 | N. 8345 W . | Do. |
| 180 | 6040 | N. 7743 W W. | Sea of do. | $34 \quad 1$ | N. 8436 W. | Do. |
| 170 W. | 5936 | N. 7829 W. | Do. | $\begin{array}{ll}33 & 20\end{array}$ | N. 8538 W . | Do. |
| | | N. 7936 W . | Bristol Bay (near Alaska) | $\begin{array}{ll} 32 & 47 \\ 32 & 23 \end{array}$ | $\begin{array}{lrl} \text { N. } 86 & 47 & \text { W. } \\ \text { N. } 88 & 2 & \text { W. } \end{array}$ | Do.
 Do. (off coast of |
| | 5742 | N. 812 W. | Off the coast of Rus. America | $\begin{array}{ll}32 & 11\end{array}$ | N. 8920 W. | California)
 California |
| 140 W. | $\begin{array}{ll}56 & 57\end{array}$ | N. 8245 W. | Do. | $32 \quad 10$ | West | New Mexico |
| 130 W. | 56 20 | N. 8440 W . | British America | $32 \quad 11$ | S. 8920 W . | Texas |
| 120 W. | 55 55 | N. 86 | Do. | $32 \quad 23$ | S. 882 W . | Mississippi |
| 110 W. | 55 41 | N. 8854 W. | Do. | | | |
| 105 W. | 5540 | West | Do. | | | |
| 100 W. | $\mid 5541$ | S. 8854 W. | Do. (near Lake Winnipeg) | | | |
| 90 W. | 5555 | S. 8644 W . | Western shore of Hudson's Bay | | | |

13. Passing south of the zone we have last been considering, we find that, con. tiguous to it, the winds in the United States and upon the Atlantic Ocean, are, on the whole, easterly, yet quite irregular, and having a very small progressive motion. This is seen by the shortness of the arrows in Louisiana, Texas, Florida, and the southern parts of South Carolina, Georgia, Alabama, and Mississippi (Plate VIII.), and also at Nos. 27, 29, 30, and 31 on Plate VII. Nos. 25 and 236 are exceptions, and will be spoken of below.
14. Farther south, we fall in with the well known north-easterly trade-winds, all characterized by long arrows, showing a decided prevalence, yet more so between latitude 10° and 25° than nearer the equator.
15. In the eastern parts of the Atlantic Ocean, near the coasts of Africa, and upon the Mediterranean Sea, also in Barbary, the winds seem to incline toward the Great Desert. This is seen on Plate VII. at all the stations in Spain, Southern France, Italy, and on the Mediterranean as far east as Constantinople (No. 233); and Smyrna (No. 15) ; also at Tripoli (No. 238); at Liberia (No. 239); at the Madeira Islands (No. 25) ; and on the Atlantic at No. 42. At No. 39 the direction is not materially changed, but the progressive motion is very much reduced, indicating a counteracting force in the direction of the Desert. It is also well known that all along the coast of Guinea south and south-west winds prevail. It was remarked by Dr. Halley, that, "in the southern parts of Italy, a south-east wind blows more frequently than any other;" but our observations from Rome and Naples indicate nothing of the kind, but rather the contrary. Our observations from Tripoli (No. 238) may not be altogether trustworthy, as they embrace a period of only five months, but the time was a tolerably fair mean for the year, in regard to temperature, viz. from March to July inclusive, and the results harmonize very well with No. 19, which represents four years' observations. At Fezzan, 300 . miles south of Tripoli, the winds are said to be northerly in winter and southerly in summer.
16. In South-western Asia, the winds are so irregular as to defy all attempts to reduce them to system, from any data now in my possession. The north-west winds at Jerusalem ${ }^{1}$ (No. 23), and the westerly ones at Bagdad (No. 22), are nearly as uniform as the "trades," while at Constantinople ${ }^{2}$ and Trebizonde (Nos. 233 and 11), the mean direction is north-easterly, at Teflis and Erzeroom (Nos. 10 and 12), nearly north, at Beirut and on Mount Lebanon (Nos. 20 and 21), also at Tabreez, Tehran, and Ooroomiah (Nos. 16, 17, and 18), westerly; at Smyrna (No. 15), east; and at Bassora (No. 24), hardly in any direction. At Aleppo, it is said to be north-west, but I have no observations from that place. (See Appendix 0.)
17. The three stations in Hindoostan all show a feeble prevalence of westerly or south-westerly winds, although situated in latitudes proper for the " trades," and although the tracks of storms in the adjacent seas are generally from south-east toward north-west. ${ }^{4}$

[^19]18. On the whole, do not the results in Series C authorize us to lay down the following, as a general description of the winds of the northern hemisphere? 1st. That from high northern latitudes the winds proceed in a southerly direction, but veer toward the west, as they approach a limit ranging from about latitude 56° on the western continent to about latitude 68° on the eastern, where they become irregular and disappear. The area of the zone occupied by these winds is about $11,800,000$ square miles. 2d. That farther south there is a belt of westerly winds, less than 2000 miles in breadth, entirely encircling the earth; the westerly direction being clearly defined in the middle of the belt, but gradually disappearing as we approach the limits on either side. The area of this zone is estimated to be about $25,870,000$ square miles. 3d. That south of the zone last named, the mean direction of the wind is easterly. This area is estimated to contain $60,760,000$ square miles. ${ }^{1}$

Theoretical Considerations.

In looking for the causes of winds, there are two which are obvious; 1st, the diurnal revolution of the earth upon its axis, and 2d, the unequal distribution of heat over different parts of its surface; and we apprehend that these two, taken conjointly, are sufficient to account for all the leading observed phenomena. Dr. Halley, in a paper read before the Royal Society in 1686, undertook to explain the phenomena of the trade-winds, by taking into account only the latter cause; or at least introducing the former only so far as it affects the temperature of places near the equator at different hours of the day. His view (as explained by Professor Mitchell in his article already referred to) was, that the rarefaction of the air over the spot where the sun is vertical, and the continual motion of this spot westward by the diurnal motion of the earth, generated a series of vortices, moving westward below and eastward above, and that the lower parts constituted the trade-winds. According to his views, the motion would be as
 in the accompanying figure, in which AMNB represents a section of the atmosphere resting on the equator $A M$, as seen from the north side, and the different arrows show the direction in which the air is supposed to move.

Others, on the contrary, have maintained that the mere rotation of the earth on its axis, combined with its annual revolution round the sun, is sufficient to account for the leading phenomena of winds, without any aid from heat. If at one and the same time the entire atmosphere were reduced to a perfect calm all over the surface of the earth, and if the temperature were everywhere the same, they have supposed that mere cosmical influences, such as we have named, would, in some unexplained way, create just such currents as

[^20]now exist. To both these doctrines there are, however, insuperable objections, ${ }^{1}$ and a correct theory can be obtained only by combining the two, for both must certainly operate, according to well-known physical laws, and unless neutralized cannot fail of producing their appropriate effects. It was by thus combining them that Hadley succeeded in satisfactorily accounting for the trade-winds, more than a century ago, and it remains to show that the same principles may be generalized so as to explain each of the three systems, which, according to our investigations, exist.

The rarefaction of the air near the equator, by heat, will cause it to rise, and give place to the colder, and, therefore, heavier air of the temperate and polar regions. The amount of this influence can be calculated, and it is found to be commensurate with the effects observed. If no other cause then
existed, we should have a regular vortex, extending from the equator to the pole, as represented in the accompanying figure, in which E represents a point on the equator; N the north pole; C the centre of the earth; B D a line drawn through the centre of the vortex, and the several arrows the direction in which the air moves.

If the air were equally dense in all parts of the vortex, and its velocity the same, the centre of the vortex must be over that parallel of latitude which
 bisects the northern hemisphere, viz. the parallel of 30°. South of this parallel, the air must ascend, and north of it, it must descend. In point of fact, the centre must be a little farther north, since the descending currents are colder and more condensed than the ascending ones, and consequently must occupy less space, but the difference is not material. The result would be, a constant current along the surface of the earth from the poles toward the equator, while the air which ascended at the equator would flow back again toward the poles. As applied to the northern hemisphere, the lower current would be from north to south, and the upper from south to north.

But if we now take the rotation of the earth into account, it will modify these motions. As the heated air at the equator rises, and attempts to flow northerly toward the pole, it crosses successive parallels of latitude, whose easterly motion, by virtue of the earth's diurnal revolution, is continually diminishing. But the air, retaining the easterly motion which it had at the equator, and consequently moving more rapidly in that direction than the places over which it passes, has a relative motion, as from the west, which, combined with its northerly motion, carries it toward the north-east, and finally toward the east. On the same principles, the lower current must continually veer more and more toward the west, as it approaches the equator.

When we reflect that it is over 6,000 miles from the equator to the pole, while one-half of the entire atmosphere lies within seven miles of the surface of the
earth, we see that it must be quite impossible for the upper and lower currents to flow in opposite directions, one upon the other, for so great a distance, without intermingling. Each must communicate to the other its own motion by friction, and it will be only near the northern and southern extremities of the vortex, that they will be kept distinct, and each have its own proper motion. In other words, there must be a system of equatorial winds at the south, a system of polar ones at the north, and a system of blended ones between. Let us notice the necessary characteristics of each system separately.

The lower current of the equatorial system proceeding southerly, and at the same time veering toward the west, constitutes the trade-winds, and it is probable that at the limit where the upper current becomes blended with the lower, no inconsiderable part of it folds under itself, and returns toward the equator, thus contributing to augment the strength of the "trades." This limit we suppose to be that which defines the northern boundary of the equatorial winds on Plates I. and VII.

On the same principles, the cold surface wind of the arctic regions must commence to flow southerly-must veer toward the west like the trade-winds, and for the same reason-and finally become blended with the winds of the intermediate system; thus defining the southern limits of the polar winds.

In this intermediate system of blended winds, the mean direction must be the result of two opposite motions, the upper current tending to move eastward, and the lower westward. It is easy to see, however, that the former must prevail; for it has nothing to contend against but the friction of the latter, while the latter has not only this same friction, but also that of the earth's surface, both conspiring to destroy its motion westward. As a consequence, westerly winds must prevail in this zone, though with less uniformity than exists in the other two. ${ }^{1}$

[^21]Thus we find that theory harmonizes perfectly with fact, both as it respects the direction and the constancy of the winds regarded as systems. Let us now examine a few minor details.

1. The facts mentioned in our fifteenth deduction have long been known, and have been usually, and I suppose correctly, accounted for by ascribing them to the rarefaction of the air over the Great Desert. Some additional facts, confirmatory of this idea, will be mentioned as we proceed.
2. The winds at the stations in South-western Asia, having of themselves but a feeble tendency to flow in one direction rather than another, owing to their proximity to the dividing line between two systems of winds, appear to be controlled entirely by the strong local influences to which they are subject, and for which that region is remarkable. This may account for their irregularity, alluded to above in our sixteenth deduction.
3. May not the less progressive motion of the wind in Europe than in the United States (mentioned as our eleventh deduction), be accounted for by the higher temperature of the former? Just as a burning building increases the strength of the wind on the side from which it blows, and diminishes it on the opposite side.
when it passes the same parallel on its return toward the equator. Now, colder air occupies less space than warm air, and therefore the current of air flowing from the pole to the equator is narrower than when it flows from the equator to the pole. If the beds in which these opposite currents flow are shifting ones, the same station will necessarily be oftener in a southerly than in a northerly current (in the northern hemisphere), and the proportion of southerly wind will in the course of a year exceed that of the northerly. Moreover, the southerly winds bring with them a quantity of vapor, with which they are continually parting in the form of rain and other precipitations; the returning northern dry winds do, indeed, bring back the aame mass of air, but without its aeriform companion, which, having now assumed the form of a liquid, no longer contributes to raise the column of mercury in the barometer."

On considering the above-described alterations to which the atmosphere is subjected, on its passage from and return to the equator, we see that throughout the temperate zone the mean direction of the wind may be from the equator, converted by the rotation of the earth into a south-westerly direction in the northern, and a north-westerly in the southern hemisphere.

Professor Loomis seems to view the subject in a similar light. (See his articles on the Meteorology of Hudson, Ohio, published in the American Journal of Science and Arts.)

SERIES D.

This Series of Tables shows the mean direction of the wind, and the rates of its progress, for each month of the year, at the several places and sections of country mentioned, and hence the annual curve which it describes. ${ }^{1}$ At a few places, there is added also the average number of days that the winds from the different points of compass prevail in each month; and, at a number of others, the direction and amount of the forces which deflect the wind from its mean annual direction. The method by which the latter were found was as follows: It was assumed that if there were no forces to deflect the winds, the mean direction and rate of progress would be the same for each month of the year, and equal to one-twelfth of the mean annual progress. If, therefore, according to the usual method of applying the "parallelogram of forces," we make the progress in any month the diagonal of a parallelogram, and one-twelfth of the mean annual progress one of the sides, either of the contiguous sides will represent the deflecting force, both in quantity and direction. Thus, for example, at Amherst, Massachusetts, the resultant for January is N. $69^{\circ} 42^{\prime} \mathrm{W} .36$, and for one-twelfth of the mean for the year, measured on the same scale, N. $73^{\circ} 13^{\prime}$ W. 30 . Draw A B in the
 direction N. $73^{\circ} 13^{\prime} \mathrm{W}$. and make its length 30. Also draw A D in the direction N. $69^{\circ} 42^{\prime} \mathrm{W}$. and make its length 36. Complete the parallelogram, and the side $A C$ or $B D$ will show the direction and amount of the deflecting force, viz. N. $52^{\circ} 47^{\prime}$ W. 6.32. For the most part, the deflecting forces are merely approximations, determined, with tolerable accuracy, by construction upon a large scale, though in a few cases they were computed trigonometrically.

[^22]

${ }^{1}$ Nos. 1, 3, 4, 5, and 6 combined. $\quad 2$ No. 1 to No. 6, inclusive. Nos. 9, 10, and 11 combined.
4 No observations were reported for this month, and the resultant here recorded is merely estimated by taking the mean between May and July. (See data, pages 31 and 32.)

${ }^{1}$ Nos. 18 and 14 combined.

${ }^{1}$ Nos. 16, 17, and 18 combined. Determined approximately by construction.

SERIES D.-Continued.

No. 24.-Average duration of winds in each month, between the parallels of latitude 45° and 50°, deduced from observations taken at ten different stations, in Iowa, Wisconsin, Michigan, Canada, and Maine, for a joint period of $17 \frac{5}{12}$ years.

SERIES D.-Continued.							
No. 42.-Augusta, Georgia.					No. 43.-Lat. 33° to 34° in Georgia and Alabama. ${ }^{1}$ 4 stations.		
5 Yests.					54 rears.		
Months.	Mean direction ofWind.		Deflecting forcos.		Months.	Mean $\frac{\text { direction of }}{\text { Wind. }}$	Rate ofProgress.
			Direation.	Am't.			
Jan.	S. $73^{\circ} 25^{\prime} \mathrm{W}$.	18!	N. $47^{\circ} \mathrm{W}$.	1	January	S. $86^{\circ} 49^{\prime} \mathrm{W}$.	16
Feb.	N. 582 W .	$20 \frac{1}{2}$	N. 12 W.	21	February	N. 6751 W .	19
March	S. 3042 W .	24	S. 2 E .	11	March .	S. $45 \quad 2 \mathrm{~W}$.	22
April	S. 3947 W .	38	S. 15 W.	11	April	S. 3947 W .	38
May	S. 2859 W .	30	S. 9 W .	17	May	S. 2859 W.	30
June	S. 548 W .	21	West	4	June	S. 548 W .	21
July	S. 2655 W .	43	S. 9 W .	31	July	S. 2655 W .	43
Aug.	S. 2446 E .	18	S. 74 E .	23	August	S. 2446 E .	18
Sept.	S. 413 E .	5	N. 76 E.	17	September	S. 413 E .	5
Oct.	N. 2527 W .	21	N. 12 E .	27	October	N. 2527 W .	21
Nov.	S. 6148 W .	31	S. $72 \frac{1}{} \mathrm{~W}$.	15	November	S. 6416 W.	29
Dec.	S. 7944 W .	16	N. 20 W.	7	December	S. 7944 W.	16
The year	S. 5240 W.	16					

No. 44.-Average duration of winds in each month, between the parallels of latitude 32° and 33°, deduced from observations taken at nine different stations in South Carolina, Georgia, Alabama, and Mississippi, for an aggregate period of $8 \frac{1}{6}$ years.

' This is the same as No. 42, with the addition of six months' observations at other stations.

WINDS OF THE NORTHERN HEMISPHERE.

[^23]

${ }^{1}$ Near the N. W. corner of Arkansas.

SERIES D.-Continued.												
No. 76.-North Atlantic Ocean, Lat. 35° to 40°, Lon. from Greenwich 45° to 75°.					No. 77.-North Atlantic Ocean, Lat. 35° to 40°, Lon. from Greenwich, 0° to 45°.							
4790 days.					2590 days.							
Months.	Mean direction of Wind.		Deflecting forces.		Months.			Mean direction of Wind.		Rate of Progreas.		
			Direction.	m't.								
Jan.	N. $86^{\circ} 22^{\prime} \mathrm{W}$.	. 32	N. $74^{\circ} 6^{\prime} \mathrm{W}$.	14	January			S. 57	$13^{\prime} \mathrm{W}$.		4	
Feb.	N. 5624 W.	. 28	N. 18 33 W.	18	February			S. 55	7 W .	3		
March	N. 7610 W.	. 29	N. 48 4 W.	13	March .			S. 79	21 W .			
April	N. 756 W.	. 16	N. 2629 E.	7	April			S. 72	57 W.	1		
May	S. $43 \quad 3 \mathrm{~W}$.	. 12	S. 5549 E.	14	May			N. 64	44 W.	1		
June	S. 5040 W .	. $29 \frac{1}{2}$ S	S. 1435 W.	17	June		-	S. 56	51 W.	1		
July	S. 452 W.	. 36	S. 16	25	July .			S. 45	33 W	2		
Aug.	S. 241 W.	. 21 S	S. 2937 E .	20	August		-	S. 37	22 W .	2		
Sept.	S. 684 W.	. 5	S. 8959 E.	14	September			S. 44	38 W.		7	
Oct.	N. 1132 E .	4	N. 8347 E .	19	October		-	S. 26	48 W.	11		
Nov.	N. 7640 W.	. 30	N. 50	14	November			S. 9	30 E .	3		
Dec.	N. 6430 W.	. 30	N. 3027 W.	17	December			S. 40	56 W.			
The year	S. 840 W.	. $\left.18 \frac{1}{2} \right\rvert\,$			The year			S. 44	26 W .	1		
No. 78.-Atlantic Ocean, North of Lat. $36{ }^{\circ} .^{1}$					No. 79.-North Atlantic Occan, Lat. 30° to 35°, Lon. from Greenwich, 5° to 45°.							
7 fears.					1749 days.							
Month.		Mean direction of Wind.		Rate of Progress.	Months.			Mean direction of Wind.		Rate of Progress.		
		N. $58^{\circ} 57^{\prime} \mathrm{W} . \quad 16$			January			S. $46^{\circ} 8^{\prime} \mathrm{E}$.		12		
February		N. 7720 W .32			February			S. 247 E .		25		
March -		N. 8114 W. 27			March .			S. 2753 E .		918 ${ }^{\frac{1}{4}}$		
April		S. 89 41 W. 46			April .			S. 129 W .		31		
May		S. 89 41 W. N. 84 8 W. 46 S.			May					8		
June		S. 67	37 W.	$\begin{aligned} & 26 \frac{1}{2} \\ & 34 \end{aligned}$	June			N. $30 \quad 9 \mathrm{~W}$.		1		
July		S. 8731 W .42			July .					$22 \frac{1}{2}$		
August		N. 88	41 W.	6	${ }^{\text {August }}{ }^{\text {J }}$			$\begin{array}{llll}\text { N. } 32 & 35 & \text { E. } \\ \text { S. } 76 & 13 & \mathrm{E} .\end{array}$		$11 \frac{1}{2}$		
October		N. 77	37 W.		September			N. $14 \quad 40 \mathrm{E}$.		13		
		N. 78	47 W.	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	October			N. 4521 E .		8		
November		N. 88	33 W.	23	November			S. 2158 E.		29		
December		S. 82 N. 87	15 W.	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	December The year			S. 4225 E . S. 4427 E.		$\begin{aligned} & 26 \\ & 10 \end{aligned}$		
The year			N. 8734 W.				.					
No. 80 .-North Atlantic Ocean, Lat. 30° to 35°, Lon. from Greenwich, 45° to 75°.					No. 81.-North Atlantic Ocean, Lat. 25° to 30°, Lon. from Greenwich, 15° to 45°.							
2564 days.					1622 days.							
Months.	Mean direction of Wind.		Deflecting forces.		Months.	Mean direction of Wind.			Deflecting forces.			
			Direction.	Am't.				Direction.	Am't.			
Jan.	S. $80^{\circ} 10^{\prime} \mathrm{W}$.	. 16	N. $56^{\circ} 27^{\prime} \mathrm{W}$.	12	Jan.	N. 78	26^{\prime} E.		. 19	S. 18°	W.	9
Feb.	S. 7916 W .	. 30	N. 8059 W.	24	Feb.	N. 43	35 E .	. 11	S. 76.	W.	16	
March	S. 7319 W .	. 21	N. 7654 W.	15	March	N. 80	19 E.	. 3	S. $60^{\circ} 40^{\prime}$		24	
April	S. 493 W.		N. 4944 W.	3	April	N. 79	39 E.	. 8	S. 554	W.	19	
May	S. $62 \quad 43 \mathrm{E}$.	14	N. 8048 E.	18	May	N. 6	39 E.	. 8	S. 6042	W.	18	
June	S. 2227 W.	. 29	S. 1658 W.	18	June	N. 42	48 E.	. 35	N. 5	E.	15	
July	S. $8141 \mathrm{E}$.	35	S. 23 38 E.	28	July	N. 4	35 E.	. 67	N. 30	E.	45	
Aug.	S. 7111 E.	19	S. 4038 E .	13	Aug.	N. 5	11 E .	. 61	N. 45	E.	38	
Sept.	S. 4988 E .	19	S. 8123 E .	20	Sept.	N. 62	36 F.	. 33	N. 6132		7	
Oct.	N. 857 E .	18	N. $6517 \begin{array}{ll}\text { E. }\end{array}$	26	Oct.	N. 73	31 E .	. 27	S. 28	E.	5	
Nov.	S. 8432 W.	. 10	N. 6346 W.	9	Nov.	N. 78	50 E .	. 20	S. $15 \frac{1}{2}$	W.	9	
Dec.	N. 8121 W.	. 29	N. 594 W.	27	Dec.	S. 70	27 E .	. 38	S. 24	E.	27	
The year	S. 3135 W.	. 11			The year	N. 6	53 E .	. 26				

${ }^{1}$ The results in this table do not include those in any of the preceding ones, being computed from entirely different data. All the others, from No. 72 to No. 90 inclusive, were obtained from data contained in Lieutenant Maury's valuable Wind and Current Charts of the North Atlantio, a oopy of which did not reach me till after this table had been computed from data previously in my possession, and the sheets made ready for the press.

21

SERIES D．－Continued．												
No．88．－North Atlantic Ocean，Lat． 10° to 15° ， Lon．from Greenwich， 15° to 45° ．						No．89．－North Atlantic Ocean，Lat． 5° to 10， Lon．from Greenwich， 10° to 55° ．						
1850 days．						3339 dars．						
Months．	Mean direction of Wind．		Defecting orces．			Months．	Mean direction of Wind．			Deflecting forces．${ }^{\text {a }}$		
			Directi	ion．	Am＇t．				Direction．	Am＇t．		
Jan．	N． $55^{\circ} 30^{\prime} \mathrm{E}$ ．	． 85	N． 21°	$2^{\prime} \mathrm{E}$	7	Jan．	N． 47°	$5^{\prime} \mathrm{E}$		65	N． $17^{\circ} \mathrm{W}$ ．	． 25
Feb．	N． 5441 E．	． 81	N． 26	58 W.	4	Feb．	N． 44	56 E	72	N． 9 W	W． 27	
March	N． 5551 E ．	89	N． 37	30 E．	9	March	N． 45	3 E.	． 74	N． 7 W ．	． 29	
April	N． 56	． 88	N． 441	19 E．	7	April	N． 44	50 E	． 82	N． 10 E．	． 36	
May	N． 4914 E ．	． 90	N． 2	0 E．	15	May	N． 55	38 E．	． 69	N．181 E ．	． 15	
June	N． 550 E．	75	N． 842	23 W．	6	June	S． 89	1 E	30	S． 43 W	． 33	
July	N． $57-2 \mathrm{E}$ ．	42	S． 59	4 W.	38	July	S． 7	1 H	． 45	S． 36 W	． 86	
Aug．	N． $49 \quad 18$ E．	． 17 S	S． 61	W．	47	Aug．	S． 4	59 W	W． 71	S． 26 W ．	． 104	
Sept．	N． $46 \quad 6 \mathrm{E}$.	23	S． 63	W．	59	Sept．	S． 8	26 W	． 58	S． 28 W．	． 94	
Oct．	N． 6920 E．	55	S． $28 \frac{1}{2}$	W．	29	Oct．	S． 38	2 E	． 30	S． 36 W ．	． 61	
Nov．	N． 6854 E．	78	S． $9 \frac{1}{2}$	E．	18	Nov．	S． 82	15 E	． 55	S． $1 \frac{1}{2} \mathrm{E}$ ．	32	
Dec．	N． 6133 E．	78	S． 9	W．	13	Dec．	N． 60	25 E	52	N． 86 W ．	． 9	
The year	N． 5725 E．	66				The year	N． 80	32 E	34			
No．90．－North Atlantic，Lat． 0° to 5° ．						No．91．－Funchal，Island of Madeira．						
3005 days．						2 rears．						
Monthe．	Mean direction of Wind．		Deflecting forces．${ }^{\text {a }}$			Months．	Mean direction of Wind．			Deflecting forces．${ }^{1}$		
			Direction．		Am＇t．				Direction．	Am＇t．		
Jan．	S． $81^{\circ} 46^{\prime} \mathrm{E}$ ．	． 53	S． $56^{\circ} \mathrm{W} .17$			Jan．N． $9^{\circ} 43^{\prime} \mathrm{E}$ ．				11 S． $24^{\circ} \mathrm{W}$ ．		． 35
Feb．	N． 8331 E ．	54	N． 70 W． 15			Feb．N	N． 6	3 W	45	S． 84 W．	． 25	
March	N． 6313 l ．	． 52	N．432 W． 30			March N	N． 18	28 E ．	43	S． $62 \frac{\mathrm{~W}}{}$ ．	． 5	
April	N． $52 \quad 18$ E．	56	N．351 W． 39			April N	N． 18	38 E.	31	S． 31 W．	． 19	
May	S． $89595 \mathrm{E}$.	48	S． 81 W． 17			May N	N． 11	2 E ．	52	N． 47 W．	． 11	
June	S． 4745 E ．	． 69	S．191 W． 50			June N	N． 14	18 E ．	50	N． $54 \frac{1}{2}$ W．	． 7	
July	S． 3717 EF	． 82	S． 14 W． 70			July N	N． 28	29 E	62	N． 54 E ．	16	
Aug．	$\begin{array}{llll}\text { S．} 20 & 52 & \mathrm{E} .\end{array}$	． 84	S． 24 W． 87			Aug．N	N． 48	17 E.	96	N． 75 E．	． 54	
Sept．	$\begin{array}{ll}\text { S．} 20 & 15 \\ \text { S．} & \text { E．}\end{array}$	． 79	S．25⿺⿸⿻𠃋丿又丶 W． 86			Sept．N	N． 24	46 W	． 27	S． 61 W．	．$\quad 34$	
Oct．	$\begin{array}{lll}\text { S．} 38 & \text { 0．} & \text { E．}\end{array}$	． 72	S． 20 W． 65			Oct．	N． 37	43 E	47	S． 68 E．	． 16	
Nov．	$\begin{array}{llll}\text { S．} & 58 & 28 & \mathrm{E} .\end{array}$	． 80	S． 2 E． 45			Nov．N	N． 8	49 E	50	$\underset{\mathbf{N} .32}{ } \mathbf{W}$ W．	． 17	
Dec．	S． $68 \quad 23$ E．	56	S． $28 \frac{1}{8} \mathrm{~W}$ ．		28	Dec． The year	N． 3022 E．		63	N． 3 E．	25	
The year	S． $60 \quad 2 \mathrm{E}$ ．	． 55			N． 23		50 E ．	45				
No．92．－Azores and vicinity．－ 6 stations．						No．93．－Gibraltar and vicinity ${ }^{\text {a }}$						
581 dats．						586 days．						
Monthe．		Mean direction of Wind．		Rate of Progress．		Monthe．			Mean direction of Wind．		Rate of Progress．	
January ．．N． $81^{\circ} 41^{\prime} \mathrm{W} . \quad 19$						January			N． $39^{\circ} 52^{\prime} \mathrm{W}$ ．		16	
February	－．	S． 52	$13 \mathrm{~W} . \quad 73$			February ．．						
March ．	－．	N． 17	35 E． 53			March ．			N． 240 W． 79			
April	－．	S． 15	4 W． 35						S． 7810 W． 12			
May	－．	N． 72	20 W． 22			May	April		N． $12 \quad 30 \cdot$ E． 15			
June		N． 45	5 W． 16			June			S． 8924 W．391			
July－	－．	N． 45	5 W .16			July－	－	－	N． $74 \quad 10$ E． 44			
August	．．	S． 50	15 W． 35			August			N． 86			
September	r	S． 44	10 W． 41			September			N． 1620 W．		22	
October		S． 41	38 W .48			October			N． 6755 E ．		27	
November	－•	S． 15	58 W． 56			November			N． 6137 E ．		92	
December		N． 21.	37 W.	26		December			S． 8435 E ．		36	
The jear	．． S	S． 63	21 W．	21			The year	－	\cdot	N． 38	18 E ．	23

${ }^{1}$ In computing these deflecting forces，the mean annual direction of the wind in the same latitude in mid ocean was taken as the standard of comparison，on account of the influence of the Great Desert，which affects the annual results all along the African coast in these latitudes，as may be readily seen by inspecting the length and position of the arrows on Plate XIII．

2 These results are obtained from observations taken at five different islands for a joint period of 205 days，and on board ships in the vicinity for 876 days．
${ }^{2}$ These results are obtained from observations taken at Gibraltar for 76 days，and on board ships in the vicinity of the straits for 510 days．

SERIES D．－Continued．

No．100．－Average duration of winds in each month，in Germany，deduced from observations taken at nineteen different stations，for an aggregate period of $19 \frac{3}{3}$ years．

$\begin{aligned} & \text { 品 } \\ & \text { 曷 } \end{aligned}$	z		$\begin{aligned} & \text { 足 } \\ & \text { n } \end{aligned}$	$\left.\begin{array}{\|c\|} \dot{x} \\ \dot{z} \\ \dot{\otimes} \end{array} \right\rvert\,$		勍	$\begin{gathered} \text { ヘi } \\ \dot{\omega} \\ \hline \end{gathered}$		∞	$\begin{aligned} & \dot{\mathbf{y}} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\dot{\theta}$	$*$ ci E	E	官			家	$\begin{aligned} & \text { Mean } \\ & \text { direction } \\ & \text { of Wind. } \end{aligned}$		$\begin{array}{\|c} \begin{array}{c} \text { Deflectin } \\ \text { forces. } \end{array} \\ \hline \text { Direetion. } \\ \hline \end{array}$	
Jan．	1.72	． 19	2.49	． 18	2.07	． 42	3.93	． 40	2.27	． 19	7.47	． 05	${ }_{6}^{6.30}$		2.52	． 42	． 19	S． $51^{10} 28^{\prime} \mathrm{W}$.	28	S． $18{ }^{\circ} \mathrm{E}$ ．	${ }_{11}^{11}$
Feb．	1.94	． 15	3.75	． 23	4.24	． 12	2.98	． 17	1.92	． 15	4.35	． 17			3.74	． 43	． 03	N． 4885 W W．	2	N． 79 E．	18
Mar．	1.90	． 28	3.57	． 33	5.03	． 13	2.41	． 17	2.65	． 13	4.68	． 15	4.42				． 01	N． $77{ }^{47} \mathbf{W}$ W．		N． 78 E．	14
April		${ }^{.} 50$	3．84 4.33	${ }_{43}{ }^{20}$	3.86 4.61	． 17	1．27	． 27	1．67 1.4	． 18	3．60	． 27	6.34 5.70	${ }^{28}$	4.00 3.06	${ }^{.62}$	． 13		${ }_{8}^{20}$	N． 21 N． 60t E． E． E．	19
May	2．18	． 25	2．84	． 15	${ }_{1.3}^{4.61}$	． 23	1．44		1.24	． 22	4.78	． 43	5．78	． 72	5．28	． 58	． 00	N．${ }_{\text {N．}}$	${ }_{35}^{8}$	N．${ }_{\text {N．}}$	${ }_{20}^{15}$
July	1.99	． 12	1.79	． 12	1.72	． 27	1.51	． 08	1.63	． 20	5.87	． 63	8.97	． 51	5.21	． 33	． 05	N． 8924 w.	4	N． 85 w	25
Aug．	${ }_{1}^{1.06}$	． 07	2．95	． 21	3.78 5.42	． 48	${ }_{2.08}^{2.37}$		${ }_{2}^{2} 08$	． 48	4．72	${ }^{41}{ }^{4}$	${ }_{5.91}^{6.85}$	${ }^{.46}$	${ }^{4.24}$	． 12	$.08$				${ }_{11}^{4}$
Oct．	${ }^{1.79}$	． 12	1.71	． 29	2.59	． 72	2.81		1.68	． 45	6.57	． 32	9.54	． 34	2.63	． 21	． 02		${ }_{36}$	N． 83 S． 43 W． W．	19
Nor．	1.54	． 25	2.51	． 20	4.04	． 48	2.90			． 28	6.92	． 23		． 27			． 07	S． 3131 w		S． 27 E ．	
Dec．	1.03	． 48	3.04	${ }^{61}$			3.54			． 30	6.29	：23		43	2.07	． 20	． 08	S． 76 51 W．	${ }^{27}$	8． 60 W ．	6
Total．	23.49						30.07										． 88	S． 824 W.	20		
																		ss			
13 ybars．													8 years．								
Month．					$\begin{aligned} & \text { Mean direction of } \\ & \text { Wind. } \end{aligned}$					Rate of Progress．			Months．					Mean direction of		Rate of ${ }^{\circ}$ Progress．	
Janu					S． $38^{\circ} 49^{\prime} \mathrm{W}$ ．						8				．					$30 \frac{1}{2}$68	
Febr	ary	．				S．${ }^{1}$	720	W．			4		Februa					S． $74^{\circ}{ }^{\circ} 8^{\prime} \mathrm{W}$ S． 47 19			
Marc						N． 6	059	W．			6	March						S． $60 \quad 7 \mathrm{~W}$ ．		8	
Apri						N． 6	432	W．			3		April					S． 7738 W.			
May		．				N． 6	121	W．			3		May					N． 6226 W.		$\begin{aligned} & 32 \\ & 41 \end{aligned}$	
June		．					342	W．			5	June						N． $603{ }^{3} \mathrm{~W}$.			
July		．				N． 88	846	W．			0	July						S． 8335 W.		$\begin{aligned} & 41 \\ & 77 \end{aligned}$	
Aug						S． 88	243	W．			6 ${ }^{\frac{1}{2}}$		Augus					S． 450	0 W ．	$\begin{aligned} & 77 \\ & 23 \end{aligned}$	
Sept	mber					S． 62	24	W．			5		September					S． 6134 W ．		53	
Octo						S． 49	917	W．			5		Octob					S． 2530	W．		6
Nove	mber					S． 4	555	W．			5		November					S． 450 W ．		71	
Dece	near	．				S． 4	627 129	W．			7		The year					$\begin{array}{ll}\text { S．} \\ \text { S．} 64 & 64 \\ 22\end{array}$		$\begin{aligned} & 55 \frac{1}{2} \\ & 39 \end{aligned}$	

' Copied from Kaemptz's Meteorology.
2 An inspection of the data on pages 96 and 100 , from which this table is computed, will show that no great reliance can be placed on the results, less so, probably, than in those at Paris alone (No. 108).

[^24]

1 These results are obtained from three months' observations at Bassa Cove, two months at Cape Palmas, and eleven months along the coast of Sierra Leone and Liberia.

2 These results are obtained from observations taken at Oahu for one month, and at Waioli for one year. At the latter station, all the winds were recorded either as North-east or "Variable."

SERIES D.-Continued.				
No. 135.-Madagascar (Tananarivou).				
3 момт ${ }^{\text {a }}$.				
Months.		Mean direction of Wind.		Rate of Progress.
January		N. $62{ }^{\circ}$	$5^{\prime} \mathrm{E}$.	28
February	-	S. 82	42 E .	79
March .	.	N. 71	53 E .	53

By combining in succession the resultants for the several months at any place, as given in the preceding series of tables, a general outline is obtained of the track pursued by the wind in the course of a year. The results, at a considerable number of places, are exhibited in Plates VII., VIII., and X. Each of the twelve parts, into which the curve is divided, shows the mean path of the wind in the corresponding month, the curve commencing in all cases with January, and ending with December.

It is obvious that much more extensive data would be needed, to secure accuracy in the form of the annual curve, than in the mean annual direction merely; and hence it was not thought worth while to exhibit in the plates any results based on less than three years' observations, except in a few rare localities. The numbers at the origin of the curves correspond with those in Series D, and may serve as references.

In order to render the form of the curves more distinct to the eye, they are drawn on a scale four times larger than the arrows which represent the mean annual directions, as may, in most cases, be seen by comparing the distance between the two extremities of any curve with the straight arrow for the same place. A few of the curves, however, are not computed from the same data as the mean annual direction, one embracing a greater number of years than the other, which produces slight discrepancies in the results.

In some few instances, where the general form of the curve was obvious, and where combining the results of two or three successive months would cancel irregularities, it has been done, and the tracks for the separate months preserved by means of dotted lines. As, for example, in the curve for Jerusalem (Plate VII. No. 117), the tracks for the months of November and December are united.

DEDUCTIONS AND REMARKS.

1. Plates VII., VIII., and X. disclose a system of winds on each side of the Atlantic Ocean possessing monsoon features. If we represent the mean annual tracks by drawing straight lines from one extremity of each annual curve to the other, we perceive that on the western side of the Atlantic, the actual track falls south of these lines in the fore part of the year, and north of it in the latter part; and that on the eastern side the curvature is generally in the opposite direction. Out of thirty-five curves on the western side, in British America, the Eastern United States, and the western half of the Atlantic, there are but two exceptions; and both of these are between the parallels of latitude 31° and 33°, just on the limit which divides the equatorial winds from the westerly ones.

On the eastern side of the Atlantic, there is a general similarity in the form of the curves, yet by no means so great as on the western side. At sea, we perceive it only between the parallels of latitude 15° and 40°; but on land, all the curves show it, more or less, except that for St. Petersburg on the north, and that for Rome and Naples on the south. The opposite curvature of the latter, also that for Madeira, and the two at sea, south of latitude 10°, will be adverted to hereafter.
2. On the western side, the monsoon character of the winds is much more strongly marked near the sea-coast than in the interior of the country. Thus, on Plate VIII., the curvature is greater in the New England States (No. 28) than in the State of New York (No. 30) or Pennsylvania (No. 32). Compare, also, the curve for Pompey, in the interior of New York State (No. 29), with the curves east of it, all of -which are for places nearer the sea-coast ; or No. 40, which is derived from observations taken mostly at Nashville, in Tennessee, ${ }^{1}$ with Nos. 33, 34, 35, 36, 37, or 41 near the coast. No. 37 is remarkable-almost equal to the monsoons of India, as may be seen by comparing it with the latter on Plate VII. In Ohio (Nos. 57, 58 , and 59), the monsoon feature does not appear to exist at all, though there seems to be slight traces of it still farther west (Nos. 61, 62, and 63).
3. On the western side of the Atlantic, there appears to be considerable uniformity in the time of the year when the curves cross the mean annual path, particularly in the zone of westerly winds. Starting from the 1st of January, all the latter, both on sea and land, fall to the right or south of the line that represents the mean

[^25]direction, recross that line for the most part (thirteen curves out of twenty) in July, and continue on the north side till the end of the year. Four curves cross a little earlier, in June, and of the remaining three, the two at the extreme north (Newfoundland and Canada) cross in August, and the one at the extreme south, near the southern limit of the system, in May. The time seems to vary somewhat with the latitude and the trending of the adjacent coast.
Of the four curves on the limit between the equatorial and westerly systems (Plate VIII. Nos. 44, 45, 71, and 80), two do not cross the line of mean direction at all, but lie to the right of it for the whole year; and the other two cross it in August, lying to the right before and to the left afterwards.
Of the easterly winds of the equatorial system, those north of about latitude 24° (Plate VIII. Nos. $46,47,48,50,51,52$, and 82), cross the line of mean direction in April, May, or June, and those farther south (Plate VII. Nos. 84, 85, and 87) in October. The latter are at sea, and may possibly be affected by the proximity of the coast of South America.
4. On the eastern side of the Atlantic there is less uniformity in the time of crossing, though (not including the exceptions already named), it is on an average considerably earlier. Out of eighteen curves (Plates VII. and X.), one crosses in February, one in March, four in April, five in May, two in June, one in July, one in September, and three do not cross it at all, but lie to the south for the whole year. One of these three is at St. Petersburg, in Russia, another at Elgin, in the north of Scotland, and the other at sea (No. 77), on the limit between the equatorial and westerly systems, thus agreeing with its neighbors (Nos. 71 and 80) on the western side of the Atlantic. The curve for the stations in Austria (No. 92) might very properly be added to this list, as it lies south of the line of mean direction over eleven months in the year.
5. The curvature in India and China is the same as in the westerly system on the west side of the Atlantic, while that in Western Siberia corresponds to those of the European stations, so far as it can be said to have any character at all.
6. The stations east of the Mediterranean Sea are as devoid of law or agreement, in the form of the curves described by their winds, as they were shown to be in regard to the mean direction of their winds.

Theoretical Considerations.

The causes of the peculiarities, in the inflection of the curves we have been considering, are more clearly seen by analyzing them in the manner described in the introduction to the foregoing series (D). By thus detaching the deflecting forces from those which determine the mean annual direction of the wind, the law at once becomes apparent that on the sea-coast, and even for some hundreds of miles from it, both on sea and land, the deflecting forces are directed towards the land, in the warmer parts of the year, and towards the sea, in the colder; a most convincing proof (if any more were needed) of the influence of heat in the production of winds, and that, too, upon an extensive scale.

Plates XI. and XII. show the truth of the law just stated more clearly than any verbal explanations. The directions and lengths of the arrows show the directions and amounts of the forces which deflect the wind from its mean annual direction in the several months of the year. These arrows are drawn on a scale twelve times greater than those which represent the mean annual directions, in Plates VII. to X . inclusive; but as the latter represent the mean progress of the wind for the entire year, while the mean monthly progress, if there were no deflection, would be only one-twelfth as great, both may be regarded, for the purpose of comparison, as drawn on the same scale. So that the length of an arrow on one of those plates, is to the length of one for the same place on Plate XI. or XII., as the force which determines the mean annual direction of the wind is to that which deflects it in the particular month to which the latter arrow relates; and the length of the corresponding portion of the curve (increased threefold, because the curves are drawn upon a less scale) ${ }^{1}$ is proportional to the resultant of the two forces. Thus, for example, at Hampden, in Maine, the force which determines the mean annual direction, the deflecting force in the month of January, and the resultant of the two, are to each other as the numbers 33,22 , and 42 ; and by measuring the arrow, No. 50, on Plate VIII., that for January on Plate XI., No. 25, and the first division of the curve No. 25, on Plate VIII., increased threefold, it will be seen that their lengths are to each other in the ratio of these numbers.

Now, if with the light of these explanations we examine Plate XI., we shall notice that the arrows point with great uniformity toward the land in the warmer months, and toward the sea in the colder. The cause is to be found in the difference of the temperature of the two. It is well known that the surface of large bodies of water, and particularly the ocean, is much more uniform in its temperature throughout the year than that of land, and consequently must be colder in summer and warmer in winter. Hence, we may account for the monsoon character of the winds on the opposite shores of the Atlantic, just as we do for the well known phenomena of land and sea breezes on the sea-coast; the only difference being that the former are on a more extensive scale.

These views are confirmed, when we examine particular localities and sections of country. The decrease in the curvature of the curves, as we recede from the seashore, has been already adverted to, the examples mentioned being $29,30,32$, and 40 , on Plate VIII., as compared with places near the coast. If we now look at the sitme numbers on Plate XI., we shall see by the shortness of the arrows that the deflecting forces, though conformable to the theory, are much less than at places nearer the sea. ${ }^{2}$ The absence of the monsoon character in the winds of Ohio is probably to be ascribed to the fact that that State lies directly between the ocean and the great lakes, so that the latter, being nearer, neutralize the influence of the

[^26]former. The same reason does not exist in the States farther west, and accordingly we find, even there, slight traces of the oceanic influence, as already remarked.
That the lakes are capable of exerting considerable influence upon the direction of the surface-wind, is proved from the fact that at the Western Reserve College, in Ohio, some twenty-five miles south of Lake Erie, the mean direction is uniformly more northerly by several degrees in the afternoon than in the forenoon, as may be seen by the following statement. ${ }^{1}$

The peninsular form of South-western Europe no doubt prevents the full development there of the general law we have been discussing; yet we have already had proof of its existence in the general similarity of form in the annual curves (Plate X.). We can see traces of it also in the deflecting forces (Plate XII. Nos. 80, 83, and 85). In all three, the arrows for June, July, and August point toward the land, and those for the colder months generally toward some neighboring body of water. No. 80, being so nearly equidistant between the North Sea, the Baltic, the Mediterranean, and the Bay of Biscay, shows more irregularity. No. 72 ought to afford evidence of the law, and I am unable to account for its failure to do so. No. 75 fails also, which is not surprising, since over half of the observations from which it was computed were taken more than 1200 miles from the nearest point in Europe, and so nearly in the middle of the Atlantic as not to feel the influence we are speaking of.

The peculiar curvature at Rome and Naples (Plate VII. No. 3), is easily explained. Both places are near a sea-coast, whose general direction is from N. W. to S. E., and have in their rear the range of the Apennines, running nearly in the same direction, and rising to an elevation of several thousand feet. The mean direction of the wind for the two places is from W. N. W. to E. S. E., which, combined with deflecting forces acting at right angles with the coast (landward in summer, and seaward in winter) must plainly give us a curve of the same general form as that which we find to be actually described.

Nos. 81, 83, 86, and 91 (Plates VII. and XII.) have caused me much perplexity. The arrows for the warmer months evidently indicate a point of rarefaction situated

[^27]to the south or south-west, and yet, all the observations from which they were computed were taken within a few hundred miles of the African coast and Desert of Sahara, a region the annual range of whose temperature must be exceedingly great. The only way in which I can account for a fact so astonishing, is by supposing the deflecting forces at these numbers to be secondary to the influence which we see so strongly marked in Nos. 88, 89, and 90. Let us, then, first devote our attention to these.

The intense heat of the Great Desert rarefies the air exceedingly from June to October, inclusive, and hence the arrows of unparalleled length (Plate XII.) pointing toward it during those months, the longest being longer than that which represents the most uniform of the trade-winds in the ratio of 104 to 89 . The influence of this rarefaction is sufficient to curve the powerful current of the trade-winds in the manner exhibited on Plate VII. Nos. 89 and 90, and to produce the not less remarkable change in No. 88, holding the current back and retarding it, so that its progressive motion in the three months of July, August, and September united hardly exceeds that during any one of the colder months of the year. But while this is so, the trades on the western side of the Atlantic are pursuing nearly their regular track, being but slightly affected by these influences. As a consequence, the latter must leave, as it were, a partial vacuum behind them, which is filled by air flowing in from the north-east and south-east. This will account for the seeming anomaly of having a somewhat strong deflecting force directed toward midocean in the hottest part of the year, as in the numbers above referred to. And yet it may be very naturally asked, Why does not the air from these parts supply the Great Desert directly, instead of taking a circuitous route to supply the region that supplies it? A question which, I confess, it seems difficult to answer.

The following table, and Plate XIII. will assist in affording a clear idea of the winds off the west coast of Africa during the warmer months. The arrows show the mean direction and progress of the wind in each square of 5°, for the months of July, August, and September, the months when the influence of the Desert is greatest. The numbers affixed to the arrows show the number of observations from which they were computed, as contained in Maury's Pilot Chart of the North Atlantic:-

SERIESE.

The following tables show the average relative force and velocity of winds from the different points of compass. At five of the stations, viz. Toronto, Girard College, Devonport, Greenwich, and Sturbington, the pressure was obtained in pounds per square foot, by means of an anemometer; and the velocity computed therefrom by Rouse's Table. At the other stations, the force was merely estimated, and represented by numbers, ordinarily from 0 to 10,0 denoting a calm, and 10 a hurricane, and the velocity computed according to the following scale, which has been adopted at the Smithsonian Institution:-

${ }^{1}$ Some of these observations were taken hourly, and others bi-hourly, and to obtain a proper average for the entire years, they have all been reduced to hourly observations by doubling the number of bi-hourly ones, together with the corresponding pressures.
${ }_{2}$

SERIES E．－Continued．										
Coarso．		North Carolina．－3 stations． $21-6$ years．			Hudson，Ohio． Mean force．		Bermudas．One year．			
		No．of Obs	Sums of numbers represent ing forces．	Mean force．	$\text { e. } \begin{gathered} \text { Part of } \\ 1838 \mathrm{and} \\ 1840 . \end{gathered}$	1841.	No．of	Obe．	Sums of numbers represent－ ing forces．	Mean forco．
		377	437	1.16	2.00	2.00	896		1366	3.45
East E．by S ．		2	2	1.00	2.20	2.12	24		60	2.50
E. S. E.		18	19	1.06	1.62	1.79	24		120	5.00
S．E．by E．		0	0	？	1.62	2.10	24		120	5.00
		158	171	1.08	1.47	1.87	720		2354	3.27
S．E．by S．		0	0	？	1.00	1.75	84		324	3.86
S．S．E．		20	24	1.20	1.62	1.56	252		960	3.81
S．by E．		5	4	． 80	1.40	2.15	36		84	2.33
South		337	405	1.20	1.50	2.21	152		593	3.90
S．by W．		10	11	1.10	1.64	1.89	204		1044	5.12
S．S．W．		85	118	1.39	1.87	1.72	276		900	3.26
S．W．by S．		3	3	1.00	－ 2.00	1.31	240		1092	4.55
S．W．		423	585	1.38	2.06	2.00	1404		5954	4.24
S．W．by W．		4	5	1.25	1.84	2.12	72		168	2.33
W．S．W．		50	60	1.20	2.12	2.28	252		1081	4.29
W．by S．		10	11	1.10	2.25	2.58	36		115	3.20
WestW．by		440	639	1.45	2.41	2.50	492		1624	3.30
		6	6	1.00	2.75	2.91	132		444	3.36
W．N．W．		15	20	1.33	2.84	2.97	192		839	4.37
N．W．by W．		1	1	1.00	2.60	3.13	0		0	？
N．W．		249	415	1.67	2.65	3.04	312		1441	4.62
N．W．by N．		0	0	？	2.04	2.82	72		252	3.50
N．N．W．		19	21	1.11	2.29	2.75	264		1188	4.50
N．by W．		2	2	1.00	2.36	2.25	156		733	4.70
Southern Maine，New Hampshire，and Vermont．－13 stations．										
39 mortis．										
Courso．		鱼宫安	产安	$\begin{aligned} & \text { 总宽 } \\ & \text { 宽宽 } \end{aligned}$						
North	0	146	148	15	11 1	448	946	2.11	3326 ${ }^{\frac{1}{2}}$	7.43
N．N．E．	0	11	16	$10 \quad 1$	100	39	82	2.10	271	6.95
N．E．	1	325	214	2341	1355	723	1888	1.92	4809 ${ }^{2}$	6.65
E．N．E．	0	1	2	$0 \quad 0$	100	4	10	2.50	45	11.25
	0	95	50	2518	550	193	867	1.90	$1327 \frac{1}{2}$	6.88
East E．S．E．	0	1	3	10	200	7	20	2.86	961	13.79
S．F．	9	242	149	9035	21.9	556	1116	2.01	4289	7.71
S．S．E．South	0	3	3	$1{ }^{1}$	$3{ }^{3} \mathrm{O}$	11	31	2.82	1601	14.59
	0	142	90	43	5 2 0	309	596	1.93	$2121 \frac{1}{2}$	6.87
S．S．W．S．W．	0	19	5	1010	100	35	94	2.69	448	12.80
	0	567	882	5048	1200	1159	2033	1.75	6157	5.31
S．W．${ }_{\text {W．S．W．}}$	0	13	10	41	0 0 0	28	49	1.75	141	5.04
West	0	265	292	5662	11110	787	1626	2.07	5628	7.15
W．N．W．N．W．	0	4	8	8	11 0 0	26	69	2.65	300	11.54
	42	532	862	77144	2210	1480	3079	2.09	11681六	7.89
N．W． N．N．W．	0	21	14	24 0	4 0 0 4 10	63 5888	141 11647	2.24	538 413401	8.54
Total	52	2377	174811	37430	103｜19 2	5868	11647	1.98	$41340 \frac{1}{2}$	7.04
Add calms						625	$\begin{array}{r} 0 \\ 116 \Delta 7 \end{array}$	1.08 .00		.00 .00
Total including calms						6493	11647	1.79	413401	6.37

${ }^{1}$ Cambridge, Amherst, and Williams Colleges not included.

' Somerset and Girard College not included.

${ }^{1}$ Not including Savannah.
$=$

SERIES E．－Continued．\quad Ohio．－13 stations													
68 montrs．${ }^{1}$													
Course．													
North	61	286	187	92	41	32	0	00	672	1127	1.68	3751	5.60
N．N．E．	3	19	24	13	4	10	0	00	64	127	1.98	4341	6.79
N．E．	29	311	221	82	23	100	0	00	676	1141	1.69	8485	5.16
E．N．E．	0	34	16	14	6	20	0	00	72	142	1.97	527	7.32
East	14	270	126	54	21	52	0	00	492	805	1.64	2523	5.13
E．S．E．	0	18	13	6	0	0	0	0 0	37	62	1.68	163	4.41
S．E．	12	301	176	50	7	20	0	0	548	841	1.53	2188	3.99
S．S．E．	2	28	17	$\begin{array}{r}3 \\ \hline\end{array}$	0	0	0	0 0	50	71	1.42	1631 ${ }^{\frac{1}{2}}$	3.27
South	68	566	237	104	26	33	1	0	1009	1505	1.49	4488	4.45
S．S．W．	5	58	49	30	2	10	0	0 0	145	259	1.79	777	5.36
S．W．	70	976	829			24.4	0	11 1	2375	4318	1.72	$13810 \frac{1}{2}$	5.81
W．S．W．	0	43	66	52	8	51	0	00	175	394	2.25	1420	8.11
West	65	1040	858		144	4817	3	0	2540	4790	1.89	16364	6.44
W．N．W．	6	37	67	42	20	51	0	10	179	416	2.32	1668	9.32
N．W．${ }^{\text {W．}}$	33	497	483			3116	2	$1{ }^{1} 0$	1448	2997	2.07	11096 ${ }^{2}$	7.66
N．N．W．		13	21	22	13	11	0	0	71	184	2.59	790	11.13
Total	368	4497	3390	1565	534	14147	6	312	10553	19179	1.82	636492	6.31
Add calms Total including calms									435	$\begin{array}{r} 0 \\ 19179 \end{array}$.00 1.75		.00 5.79
			．	．				．	10988		1.75		5.79
Kentucky and Tennessee．－9 stations．													
29 м													
Coarse．						$\begin{aligned} & \text { 置宽 } \\ & \text { 安 } \end{aligned}$				客边			
North		0	145	28	16	0	0	189	249	1.32		602	3.19
N．N．E．		0	9	4	3	30	0	16	26	1.62		711	4.47
N．E．		0	131	20	5	50	0	156	186	1.19		$404 \frac{1}{2}$	2.59
E．N．E．		2	10	6	0	0	0	18	22	1.22		46	2.56
East		1	138	20	4	40	0	163	190	1.17		407	2.50
E．S．E．		0	9	3	0	0	0	12	15	1.25		30	2.50
S．E．		1	153	35	12	2	0	202	263	1.30		622	3.08
S．S．E．		0	17	3	0	0 0	0	20	23	1.15		46	2.30
South		5	251	95	28	12	8	399	613	1.54		1817	4.55
S．S．W．		1	59	26	21	12	0	109	182	1.67		$535 \frac{1}{2}$	4.91
S．W．		3	769	272	60	11	0	1115	1537	1.38		3654	3.28
W．S．W．West		1	20	6	9	$9{ }^{9}$	0	40	75	1.87		2771 1	6.94
		10	642	258	96	（ 8	3	1017	1493	1.47		3831	3.77
W. N. W.		0	13	9	1	1 0	0	23	34	1.48		$74 \frac{1}{2}$	3.24
N．W．W．		0	279	96	30	－ 7	0	412	589	1.43		1492	3.62
N．N．W．		0	23	7	7	7 0	0	37	58	1.57		161 $\frac{1}{2}$	4.36
Total		24	2668	888	292	－ 45	11	3928	5555	1.41		4072	3.58
Add calmsTotal including calms								352	0	． 00		0	． 00
			－	－				4280	5555	1.30		4072	3.29

＇Hudson not included．

SERIES E．－Continued．															
26 момтнs．															
Course．			訔安		魚它										
North	5	72	50	18	19	21	5	0	1	191	446	2.34		2099	10.99
N．N．E．	0	3	1			0	0	0	0	4	5	1.25		10	2.50
N．E．	0		93		32		8	0	0	370	721	1.95		27182	7.35
E．N．E．	0	1	0	0	0	0	0	0	0	1	1	1.00		2	2.00
East	0	93	34		6	6	2	0	0	165	299	1.81		1072	6.50
E．S．E．	0	3	1	0	0	0	0	0	0	4	5	1.25		10	2.50
S．E．	0	127	122	52	15	5	1	0	0	322	618	1.92		1987	6.17
S．S．E．	0	1	1	0		0	0	0	0	2	3	1.50		6	3.00
South	1	219	125	57	19	10	5	0	0	436	796	1.83		27012	6.20
S．S．W．	0	7	4	0	0	0	0	0	0	11	15	1.36		30	2.73
S．W．	5	558	346	111	59	9	0	0	0	1088	1864	1.71		5682 ${ }^{\frac{1}{2}}$	5.22
W．S．W．	0	2	2	2	0	0	0	0	0	6	12	2.00		37	6.17
West	3	306	291	114	36	15	3	0	0	768	1467	1.91		4764	6.20
W．N．W．	0	2	1	0	0	0	0	0	0	3	4	1.33		8	2.67
N．W．	0	278	172	118	73	18	1	1	0	661	1372	2.08		5294	8.01
N．N．W．	0	3	0	0	0	0	0	0	0	3	3	1.00		6	2.00
Total	14	1857｜12	1243	545	259	90	25	1	1	4035	7631	1.89		$6427 \frac{1}{2}$	6.55
Add calm										169	0	． 00		0	． 00
Total incl	ng ca	ms							．	4204	7631	1.82		$6427 \frac{1}{2}$	6.29
Course．	Pouce，Porto Rico． 1 month．			Turk＇s Island， Bahamas． 1 month．				Porto Cabello，Venezuela． 3 months．					Sturbington，England． 1 year．${ }^{\text {a }}$		
								媐							
North	91	92	185	22	4	析	2.09	46	61	1.33	174	3.78		4210.3	432
N．N．E．	0	0	0	6	1	1	1.83	2	3	1.50	6	3.00	354	5410.6	2328
N．E．	31	42	107	$\frac{1}{2} 53$	10		1.91	190	333	1.75	982 ${ }^{\frac{1}{2}}$	5.17	317	1714.2	4468
E．N．E．	2	7	371	$\frac{1}{2} 26$	5	7	2.19	13	11	． 85	27	2.08	147	4717.0	2491
East	74	110	397	34	8	2	2.41	142	183	1.39	485	3.42		7512.6	948
E．S．E．	0	0	0	20	4	1	2.05	0	0	？	0	？		6812.5	854
S．E．	26	47	162	20	36	6	1.80	59	50	． 85	136	2.31		818.6	699
S．S．E．	0	0	0		2	2	1.00	14	14	1.00	29	2.07		7714.6	1125
South	1	1	2	3	3	3	1.00	48	39	． 81	$100 \frac{1}{2}$	2.09	136	136.3	1811
S．S．W．	0	0		0	0	0	？	6	5	． 83	11	1.83	149	4918.7	2787
S．W．－	0	0	0	2	2	2	1.00	48	50	1.04	121	2.52	265	5521.8	5773
W．S．W．	0	0	0	0	0	0	？	0	0	？	0	？	609	917.0	10227
West	2	2	4	1	1	1	1.00	25	29	1.16	$67 \frac{1}{2}$	2.70	383		6836
W．N．W．	0	0	0	0	0	0	？	2	2	1.00	4	2.00	877	718.5	16301
N．W．	1	1	2	10	14	4	1.40	23	31	1.35	93	4.04	412	1216.2	6695
N．N．W． Calms	0 3	0	0 0	3		5	1.67	0 11	0 0	${ }^{\text {？}}$	0	${ }^{?}$	－298	810.1	3011
Calms	3	0	0					11	0	0	0	0			

[^28]
'By Osler's Anemometer.
2 By Whewell's Anemometer.

SERIES E．－Continued．																			
Course．	Greenwich，England．										Oporto，Portagal． 1 month．			Tripoli，Barbary．					
	1841.					1842.								5 months．					
				靣 苞定				旡宽											
North	418	404.5	2.00	20.56	8594	482	174.5	1.47	17.28	8329	12	22	1001	74	136	1.84			
N．N．E．	138	81.5	2.00	20.16	2768	168	78.0	1.14	15.22	2557	0	0	0	5	12	2.40			
N．E．	420	72.7	1.48	17.34	${ }_{6371}^{4161}$	454	${ }^{153.7}$	1.35	16.56	7518	1	1	2 0	77 31	165 90	2.14			
E．${ }_{\text {East }}$	204	${ }_{43.3}$	1.88	19.54	${ }_{3987}$	438	68.0	1.17	15.42	6754	5	14	86	97	224	2.31			
E．8．E．	74	4.5 3.5	${ }^{1.87}$	13.33	${ }_{986}$	62	1.2	． 42	9.20	570	7	7	14	20	56	2.80			
8．E．	78	4.7	． 68	11.75	916	30	20.0	2.22	21.24	637	4	4	8	40	90	2.25			
S．S．E．	136	137.0	1.93	19.80	2692	46	68.5	1.70	18.59	855	2	6	37	13	29	2.23			
South	508	403.7	2.16	20.94	10637	480	139.0	1.61	18.10	8888	14	27	137	48	101	2.20			
S．S．W．	684	1104.0	2.64	23.17	15848	432	400.0	1.71	18.63	8048	5	8	33	5	11	2.20			
S．W．	1196	1191.7	2.45	22.31	26682	916	1244.0	2.58	22.90	20976	20	40	1861	18	41	2.28			
W．S．W．	808		2.37		17541	792	819.0	2.35	21.85	17805	8	8	16	11	39	3.54			
West	798	321.5	2.00	20.16	16087	538	224.0	2.33	21.76	11708	4	4	8	32	55	1.72			
w．N．W．	220	118.7	1.88	19.54	4298	118	102.5	2.93	24.40	2879	9	13	51	1	2	2.00			
N．W．${ }^{\text {W }}$	200	136.2	2.47	22.40	4480	86	64.0	2.20	21.14	1818	20	${ }_{3}^{47}$	${ }_{212}^{237}$	80	459	1.99			
N．N．W．	164	197.7	2.40	22.00	3608	142	102.0	1.79	19.00	2698	8	33	212	11	32	2.91			
Total number of miles travelled in the two years． Average rate per hour Do．in mean direction																			
SUMMARY．																			
Pleoe of observation．															b눙․․奄宽克品	$\begin{aligned} & \text { 呂 } \\ & \text { 淢宫 } \\ & \hline \end{aligned}$			
Boothia Felix ．．．．．．．．．．． 3 ． 44																			
Toronto（by anemometer）．．．．．．．．．．．． 1 .61 8.98																			
Do．	by es	timatio	n)									1	． 44	4	7.69				
Southern Maine，New Hampshire，and Vermont ．．．．．．． 13 1．79 6.37																			
Cambridge，Massachusetts ．．．．．．．．．． 1																			
Massachusetts，Rhode Island，and Connecticut ．．．．．．．${ }_{\text {c }}$																			
New York State ．．．．．．．．．．．． 11																			
New Jersey and Pennsylvania ．．．．．．．．．．． 15																			
Girard College，Pennsylvania ．．．．．．${ }_{\text {a }}$																			
Somerset，Pennsylvania ．．．．．．．．．． 1.02																			
Delaware，Maryland，and Eastern Virginia \quad ．${ }_{\text {a }}$																			
North Carolina ．．．．．．．．．． 3																			
Tennessee and Kentucky ．．．．																			
Ohio ．．．．．．．．．．．．．．． $13-1.75 \quad 5.79$																			
$\begin{array}{ll}\text { Indiana，Illinois，Michigan，Wisconsin，and Iowa } & \text { ．}\end{array}$																			
$\left.\begin{array}{lllllllll\|l\|l\|l}\text { Porto Cabello，Venezuela } & \text { ．} & . & . & . & . & . & . & . & . & 1 & 1.29 \\ \text { Pouce，Porto Rico } & \text { ．} & . & . & . & . & . & . & . & . & . & 1\end{array}\right) 1.31$																			
Turk＇s Island，Bahamas ．．．．．．．．．． 1																			
Bermudas ．．．．．．．．．．．．． 1																			
Inchkeith，Scotland ．．．．．．．．．．． 13.27																			
Calton Hill，Scotland ．．．．．．．．．． 13.63																			
Sturbington，England ．．．．．．．．． 1 15．56																			
$\begin{array}{lll}\text { Greenwich，England } & \text { ．．．．．．．．．．}\end{array}$																			
Devonport，England ．．．．．．．．．． 1 ． 1.46																			
Oporto，Portugal ．．．．．．．																			
Tripoli，B	Barbar											1	2.21						

${ }^{1}$ For Toronto，Girard College，Greenwich，and Devonport，the force in this column is expressed in pounds of pressure per square foot；for all the other places，it is expressed in terms of the numbers $0,1,2,8, \& c, 0$ denoting a calm，and 10 a hurricane，except that，for Boothia Felix and Bermuda，the maximum is 12 instead of 10.

SERIES F.

The following table is designed to elucidate the last of the series of questions proposed at the outset of this discussion, and shows the effect of combining the element of force, or velocity, with that of time, in computing the mean direction of the wind. The question itself is a highly important one, for since the reat point that we wish to arrive at is the mean direction and amount of the actual motion, or transfer, of the air that passes over any given place or section of country, it is obvious, that if there is a difference in the velocity of winds from the different points of compass, or over different sections of country, such as to materially affect the results that would be obtained if it were always and everywhere the same, all the computations in the foregoing pages must require correction, if they be not rendered in great measure worthless; for they were all made on the assumption that the velocity was uniform, or, which is the same thing, without any reference to the velocity. And not only so, but nearly all the observations that have ever been taken, both by land and sea, must be thrown aside (for in very few of them has the force of the wind been recorded), and the whole work of observation must be commenced anew.
The question admits of being considered under two aspects: 1st, in regard to the effect of difference in the mean velocities of winds from the different points of compas8, which obviously might affect both the direction and amount of the resultant, at any given place of observation; and 2d, a difference in the mean velocity of the whole, in different regions or sections of country, which might affect the amount of the resultant, but not its direction. Viewed in either aspect, the question is one that can be determined only by observation and experiment. We can know nothing about it à priori. Difference of velocity may produce a very great effect upon the mean resultant, or very little, or none at all.
As, in the absence of anemometers, different meteorologists have employed different measures for the velocity of the wind, some making use of the numbers themselves which represent the forces, ${ }^{1}$ instead of interpreting them into miles per hour, as is done at the Smithsonian Institution, it seemed best, in examining the question, to compare the results by each of these methods, with those for time only. The data for the computations are contained in the columns of Series E, headed respectively "Total Number of Observations," or Number of Hours;" "Sums of Forces," or "Total of Numbers representing Forces;" and "Integral Effect," or "Total Number of Miles;" and, for convenience of comparison, the resultants, both in regard to direction and amount, are placed in parallel columns. In order to express the ratio for time only, in terms of force and velocity, I first found, as in former tables, the ratio that it bore to the total of the winds observed at the stations (which must evidently hold true, whatever be the measure adopted for the velocity),
${ }^{1}$ See Prof. Loomis's articles on the Meteorology of Hudson, Ohio, published in the American Journal of Science and Arts.
and then multiplied the total force and distance by this ratio．Farther，as some of the resultants were computed from a greater number of observations than others， it became necessary to reduce them to a common standard，so as to render them capable of comparison．This was effected by dividing each resultant by the num－ ber of observations from which it was computed．

Place of observation．		Direction of resultant．			Amount of resultant．				
		Time．	Force．	Distance．	In terms of force．${ }^{\text {？}}$		In miles per hour．		
					$\stackrel{\text { ® }}{\text { ® }}$	边	$\stackrel{\dot{\Phi}}{\dot{E}}$	蛧䔍	
Boothia Felix ．	3	N． $35^{\circ} 10^{\prime} \mathrm{W}$ ．	N． $27^{\circ} 10^{\prime} \mathrm{W}$.	－－－		1.15	－	－	29
Toronto（by anemo－ meter）	1	N． 1023 W．	N． 4153 W．	N． $34^{\circ} 29^{\prime} \mathrm{W}$.	． 04	． 18	． 54	1.49	6
Toronto（by estima－ tion）	1	N． 2130 W ．	N． 2121 W．${ }^{\text {d }}$	N． 1247 W．	． 04	． 08	． 69	1.23	9
Southern Maine，New－ Hampshire，and Ver－ mont	13	N． 7142 W.	N． 6656 W.	N． 6322 W.	． 47	． 54	1.66	1.89	26
Cambridge，Mass．．	1	S． 8721 W.	S． 8737 W.	－ 22 W	． 44	． 47	－	－	27
Williams College，do．	1	N． 7747 W．	N． 7939 W．	－－－	． 98	1.01	－	－	31
Massachusetts，Rhode Island，and Con－ necticut	11	N． 7731 W.	N． 7866 W.	N． 7849 W.	． 53	． 55	1.61	1.68	31
New York State ．	11	N． 85	N． 8817 W.	S． 8135 W ．	． 61	． 68	2.44	3.04	31
New Jersey and Penn－ sylvania	15	N． 858 W．	N． $7312 \dot{\text { W．}}$	N． 805 W.	． 55	． 66	1.82	2.19	35
－Girard College，Penn－ sylvania（1843）	15	N． 6858 W		N． 5420 W．	－	－	1.53	2.24	24
Do．do．（1844）．	1	S． 8937 W.	N． 6316 W.		． 13	． 24		2.24	18
Delaware，Maryland， and East．Virginia	5	S． 8747 W.	S． 8324 W.	S． 778 W．	． 40	． 55	1.81	1.98	29
North Carolina ．	3	S． 88 5 W．	N． 7498 W.	－－－	． 10	． 17		－	7
Savannah，Georgia ．	1	S． $5 \quad 21$ E．	S． 2124 E．	－－－	． 29	． 29	－	－	$20 \frac{1}{2}$
Georgia，Alabama，Mis－ sissippi，and North－ ern Florida	12	S． 6257 W	S． 571 W．	S． 6613 W.	． 24	． 23	． 82	． 73	13
Tennessec and Ken－ tucky	9	S． 656 W．	$\text { S. } 65 \quad 13 \mathrm{~W} .$	S． $64 \quad 13$ W．	． 59	． 68	1.48	1.77	45
Ohio ．．．	13	S． 7712 W.	S． 8242 W.	S． 8557 W.	． 68	． 77	2.26	2.73	39
Athens，Illinois ．	1	S． 6149 W ．	S． $65 \quad 50$ W．	S． 7053 W.	－	． 7	． 99	1.17	31
Indiana，Illinois，Mi－ chigan，Wisconsin， and Iowa	11	S． 690 W．	S． 7547 W．	S． 8714 W．	． 63	． 62	1.97	1.94	$34 \frac{1}{2}$
Porto Cabello，Vene－ zuela	1	N． 7625 E．	N． $59 \quad 1 \mathrm{E}$ ．	N， 5724 E．	． 54	． 70	1.49	2.05	42
Pouce，Porto Rico ．	1	N． $50 \quad 3 \mathrm{E}$ ．	N． 6247 E ．	N． 7110 E ．	． 84	． 86	2.48	3.14	64
Turk＇s Isl＇d，Bahamas	1	N． 6446 E ．	N． 663 E．	－－－	1.29	1.41		－	65
Bermudas ．．	1	S． 3711 W.	S． 7541 W．	－－－	． 79	． 66	－	－	23
Inchkeith，Scotland	1	S． 7138 W.	． 41 W．	S． 7921 W.		－	2.79	5.02	21
Calton Hill，do．－	1	S． 8010 W.	－	S． 8310 W.	－	－	3.27	6.43	24
Sturbington，England	1	N． 67 35 W．	－－	N． 76	－	－	6.69	7.62	43
Greenwich，do．（1841）	1	S． 59.25 W.	－－	S． 6130 W.	－	－	－	－	42
Do．do．（1842）	1	S． $611^{\circ} 44 \mathrm{~W}$ W．	S－52－38 W	$\left\lvert\, \begin{array}{crrr}\text { S．} 63 & 0 & \text { W．} \\ \text { S．} & 60 & 24 & \text { W }\end{array}\right.$	47	74	－$\overline{95}$	7.25	25
Do．for the two years	1	S． 6014 W．	S． 5238 W．	S． 6224 W.	． 47	． 74	6.95	7.25	$34 \frac{1}{2}$
Devonport，England （1841）	1	S． 7919 W.	$-\quad-$	S． 7830 W．	－	－	5.46	5.50	25
Do．do．（1842）	1	S． 71	－－－	S． $70 \times 11 \mathrm{~W}$.	－	－	1.69	4.18	8
Do．for the two years	1	S． 7724 W.	S． 5439 W．	S． 7598 W.	． 25	． 39	3.65	4.84	17
Oporto，Portugal	1	S． 8435 W.	N． 7744 W.	N． $68 \quad 38$ W．	． 67	． 64	3.20	3.09	34
Tripoli，Barbary	1	N． 503 E ．	N． $60 \quad 10$ E．	－	． 54	． 62	－	－	$24 \frac{1}{2}$

${ }^{1}$ For Toronto，Girard College，Greenwich，and Devonport，the force in this column is expressed in pounds of pressure per square foot；for all other places，it is expressed in terms of the numbers $0,1,2,3, \& c ., 0$ denoting a calm，and 10 n hurricane，except that，for Boothia Felix and Bermuda，the maximum is 12 instead of 10.
8 Computed from the published abstracts，in which the force on pressure is resolved in the four cardinal directions．

The modifications occasioned by introducing the element of force, or velocity, may perhaps be more clearly seen in the following table, which is deduced from the preceding one, and shows the difference of the resultants, both in direction and amount, from what they are when computed from time only. In the columns headed "Difference in Direction of Resultant," the sign + denotes that the direction is farther to the right than it would be if computed from time only, and the sign -, that it is farther to the left. In those headed "Difference per cent. in Amount of Resultant," the sign + denotes that it is greater than if computed from time only, and the sign -, that it is less.

Place of observation.	Difference in direction of resultant.		Difference in amount of resultant.	
	Force.	Distance.	Force.	Distance.
Boothia Felix	$+8^{\circ} 0^{\prime}$		+ 62	
Toronto (by anemometer)	-31.30	$-24^{\circ} 6^{\prime}$	$+350$	+ 176
Do. (by estimation) .	$+09$	$+843$	$+100$	+ 78
Southern Maine, New Hampshire, and Vermont	+ 446	+ 820	+ 15	+ 14
Cambridge, Massachusetts -	+ 016		+ 7	
Williams College, Do. .	- 152		+ 3	
Massachusetts, Rhode Island, and Connecticut	- 035	-118	+ 4	+ 4
New York State	- 221	-1229	+ 112	+ $24 \frac{1}{2}$
New Jersey and Pennsylvania	$+1156$	$+53$	+ 20	$+20$
Girard College, Pennsylvania (1843)		+ 1438		+ 46
Do. do. (1844) .	+ 277		+ 86	
Delaware, Maryland, and Eastern Virginia	- 423	-1039	+ 371	$+9 \frac{1}{2}$
North Corolina :	+ 1746		+ 70	
Savannah, Georgia • .	-163		0	
Georgia, Álabama, Mississippi, and Northern Florida	- 556	$+316$	- 4	- 11
Tennessee and Kentucky	$+07$	- 053	+ 15	$+19 \frac{1}{2}$
Ohio	$+530$	$+845$	+ 13	$+21$
Athens, Illinois : . . .	+ 41	+ 94	$+13$	+ 18
Indiana, Illinois, Michigan, Wisconsin, and Iowa	+ 647	+1814	- 13	- 12
Porto Cabello, Venezuela . . .	-1724	-19 1	$+30$	$+37 \frac{1}{2}$
Pouce, Porto Rico .	$+1244$	$+217$	$+2 \frac{1}{2}$	+ 27
Turk's Island, Bahamas	+ 117		+ 9	
Bermudas . .	$+3830$		- 162	
Inchkeith, Scotland		+ 743		+ 80
Calton Hill, do. .		+ 30		+ 97
Sturbington, England		- 913		$+14$
Greenwich, do.	- 736	+ 210	$+57 \frac{1}{8}$	+ 4
Devonport, do.	-2245	- 215	$+56$	+ 33
Oporto, Portugal	$+1741$	+26 47	- $4 \frac{1}{2}$	- 32
Tripoli, Barbary	$+107$		$+15$	

In the series of wind-roses on Plate XIII., the width of the shading, in different parts of the circumference, is proportional to the average force of the winds from those directions, as given in Series E. The arrows exhibit to the eye the direction and amount of most of the resultants contained in Series F, No. 1 being that for time, No. 2 for force, and No. 3 for distance.

An inspection of the foregoing tables and plate shows very clearly that, as a general thing, the difference in the velucity of the winds from different points of compass affects the resultant but slightly, either in direction or amount. This is especially true, when observations, taken at a considerable number of stations, are combined, so as to neutralize the effect of local influences, to which almost every
single station is more or less subject, causing the velocity of winds from certain points of compass to be greater or less than naturally belongs to them. The only apparent exception is in North Carolina, and there it is only apparent, for twentyfour out of the twenty-six months' observations reported came from one place. If we combine all the places in the United States, at which the velocity has been estimated by the use of the numbers $0,1,2,3, \& c$., the mean resultant obtained from the actual distances is $\mathrm{S} .87^{\circ} 44^{\prime} \mathrm{W} .1 .74$ miles per hour; while, if we take the same observations, and give the same mean velocity to each, it is $\mathrm{S} .85^{\circ} 59^{\prime} \mathrm{W}$. 1.53 miles per hour-a difference of only $1^{\circ} 45^{\prime}$ in direction, and 21 hundredths of a mile in amount. . . . Nor is there any uniformity in the operation of this slight influence of velocity on the mean direction. If we look over the list, we notice that in some cases it makes it more northerly, and in others more southerly; though it almost invariably increases the amount more or less; showing that the mean velocity of air moving in the same direction as the main current, is, on the whole, a little greater than of that moving in the opposite direction. This is what we should expect; for, in the case of any local disturbance or eddy in the atmosphere, the velocity of those parts which move in the same direction as the main current is equal to the sum of the two motions, while, in the opposite parts, it is equal only to the difference.

We can obtain light upon the remaining inquiry, viz.: the effect of difference in the mean velocity of the wind in different countries or parts of the country, from the general summary at the end of Series E. The only effect of this difference is, as has already been remarked, to increase or diminish the amount of the resultant, without altering its direction. Other things being equal, the amount of the resultant must obviously be exactly proportional to the mean velocity of the wind; so that it is necessary only to compare the velocities, as given in the table just referred to. Turning to it, we perceive that, while the mean velocity of the entire United States is about six miles ${ }^{1}$ per hour, there could hardly exist a greater diversity in the geographical distribution of the parts of it where the velocity exceeds or falls short of the mean. Is it not, therefore, more natural to refer the difference to local influences, or errors of observation, and to conclude that, on the whole, there is, throughout the United States, no great difference of velocity?

But if we now cross the Atlantic, and compare American with European observations, there seems to be a remarkable difference between the velocity there and here. If the observations are to be relied on, and there is no apparent reason why they are not, the velocity there is very much greater. We see it not only at those places where the velocity was merely estimated; but at Greenwich and Devonport, in England, as compared with Toronto and Girard College, in this country, at all of which places it was accurately measured with instruments of the same construction, Osler's anemometer being used at them all, and yet the records show the velocity to be nearly three times greater at the former two places than at the latter two. This difference of velocity, if it really exists, will more than compensate for the less ratio that the progressive motion of the winds in Europe bears to the total motion, formerly adverted to, so as, on the whole, to make the progressive motion greater there than in the United States.

[^29]
APPENDIX.

A.

No doubt materials exist, if they could be collected together, for a far more thorough investigation of the laws of atmospheric circulation in the northern hemisphere than I have been able to give in this memoir. In a letter from Mr. Kuppfer, Superintendent of the magnetic observations in Russia, to Sir John Herschel, dated May 25, 1845, it is stated that the meteorological archives of the Academy of Sciences, at St. Petersburg, contained, at that date, collections of observations from seventy-five different stations in the Russian empire, while all that I have been able to obtain amounts to but about a dozen, and the names of five more; and, for aught I know, my collections from some other countries may be proportionably meagre, compared with existing materials. Series of meteorological observations (some of them very valuable) have been taken, and no doubt preserved, at all the following places; and might not some of those who have them in charge, do a useful service to the cause of science, by giving them greater publicity?

[^30]

B.

Extract from a letter from Donald Ross, Esq., Norway House :-
" I may as well mention that this post is situated on a branch of the 'Sea River,' or, more properly speaking, the Nelson River, about twenty miles due north from where it leaves the great Lake Winnipeg, and is, as near as I can judge, about four hundred feet above the level of the sea.

It may be somewhat curious to notice that, although the winds here blow from the South for a greater number of days during the year, than from any other single quarter of the compass, yet the Northerly wind, together with the N. E. and N. W., very far exceeds the Southerly, S. E. and S. W., so that, in reality, the North may be considered as the most prevailing wind; neither the East nor the West prevails much at any season of the year."

[^31]C.

Extract from a letter from J. M. Batchelder, Esq., Saco, Maine, accompanying his observations:-
"This place is situated on the Saco River, three miles from the ocean, from whence we have the south wind, which, you will observe, is the prevailing one during the summer months. There are frequently local currents down the valley of the river; but I think that the observations are, in the main, correct."
D.

For a description of the meteorological stations in the State of New York, see the reports of the Regents of the University of that State, as made annually to the legislature.

E.

Lafayette College, where the observations for Easton, Pennsylvania, were taken, is situated on an abrupt bank of the Deláware River, nearly 200 feet above its surface, and distant from it not more than one-fourth of a mile. There is no local cause that can materially affect the direction of the wind, unless it be the Blue Mountains, which are about twenty miles off.

Extract from a letter from George Mowry, Esq., Somerset, Pennsylvania, accompanying his observations:-
"The locality of Somerset is about half way between the Alleghany and Laurel Hill, which mountains run nearly north-east and south-west. There is no other table-land between us and Laurel Hill; but a few miles south and east of us, Negro Ridge lies, flattened down to within fifty or sixty feet of the level of Somerset; farther south-west, toward the Maryland line, it is a considerable mountain. You are right in your inference that we are at the head of a branch of Youghiogeny; and, on a close inspection of a good map, you will observe that the waters flow north and south from us-consequently we are situated on some of the highest table-land in the State."

G.

Extract from a letter from Professor McCay, Athens, Georgia, accompanying an abstract of his observations:-
"I do not think there is any local cause for our winds. There are no mountains within sixty or seventy miles-no regular ridges for a still greater distance. The country is undulating, with no changes of elevation amounting to five hundred feet, in a circle around of fifty miles. The river near us is very small. Its course very irregular, sweeping round us in a semicircular course. Other streams near us have a general course to the south-east-nearly south."
H.

Extract from-a letter from the Rev. H. G. O. Dwight, Constantinople, Turkey, accompanying his observations:-
"In regard to my record of the winds, I must say, that if I had been situated where I had a high vane to guide me, the table would probably have shown some slight veerings to the east or west, which do not now appear. There is, however, no doubt of the fact, that the wind here, as a general thing, blows either from the north-east or the south-west. A wind, from either of the four cardinal points, never continues long in Constantinople. During the fifteen or sixteen years that I have been here, I have noticed that our prevailing wind in summer, is north-east. Indeed, from July to October it is so constantly and regularly from that quarter as to be almost a monsoon ; and during that period, the nights are very apt to be calm. The wind begins to blow gently soon after sunrise, and it increases until, say two o'clock, when it not unfrequently blows very strong, and then gradually dies away, and, soon after sunset, it becomes calm again. During the prevalence of this wind in summer, the atmosphere is usually clear, or, at least, there are only flying clouds, without rain; but, in winter, the north wind always brings clouds and rain. When the south wind blows in summer, it is usually a mere land breeze, and I have often myself observed, in passing up the Bosphorus on a summer's day, when the wind is south-west at the entrance of the Bosphorus into the Sea of Marmora, it is northeast at the northern end of the same strait, i.e. as it issues from the Black Sea. I have known it to blow all day thus in opposite directions, the two winds meeting at the middle of the strait where it was perfectly calm.
"One fact you will probably notice from my table, and that is, that there is far more southerly wind in winter than in summer. And this leads me to say a word in reference to your question, whether I know of any local cause, besides the direction of the straits, that would affect the wind? About seventy or eighty miles south of us is the high range of Mount Olympus (not Thessalian, but Bithynian), whose summit is at least eight thousand feet above the sea level; and, of course, in winter, it is covered with an immense mass of snow. This has been supposed to be the chief cause of our having so much southerly wind in winter. I do not give this as my opinion, however, but I simply state the fact of such a mountain being in such a relative position to the capital, and also an inference that has been drawn from that fact. I have always noticed that our coldest weather in winter comes when the southerly wind first begins to blow, which I account for on the supposition that such a wind brings first over us the frozen atmosphere of Olympus, and other high ranges of mountains in the interior. But if the wind continues two or three days (and it sometimes does two or three weekis uninterruptedly in winter), it is sure to bring mild and almost summer weather. The barometer here invariably sinks with a southerly wind, and the rain puint is much higher with a northerly than with a southerly wind. I have sometimes noticed an alarming fall in the barometer, but I soon learned not to anticipate any unusual storm from that, if the wind was just coming from the south or south-west. Our heaviest blows, and our most copious rains, ordinarily come just as the wind is changing from a southerly to a northerly direction.
" As you are interesting yourself in the study of the winds, I will just mention one more fact, though an isolated one. (I wish I had more of them.) Three years ago, I was in Smyrna, in the autumn, when we had one of the most dreadful
gales I have experienced on these shores. It came in the night, and blew for four or five hours, I think, with the greatest violence, so that much damage was done to the shipping. I took particular notice of the wind, and found that the same gale had been felt, if possible, still more severely in Constantinople, though somewhat later, i. e. two or three hours, perhaps; and an observant sea captain of my acquaintance, who happened to be off this port at the time, informed me that the wind here was from the south-west, i. e. directly opposite that in Smyrna. I must say, however, that as I took no note of it at the time, I am not positively certain it was later at Constantinople. It may have been so much earlier instead of later, though my strong impression is that my first statement is correct. The main point, however, to which my mind was directed, was the fact that in the same gale the wind blew from opposite quarters at Smyrna and at Constantinople. The distance between the two cities, by sea, is estimated at about 350 miles, though by an air line it must be considerably less."

I.

Extract from a letter from Rev. S. H. Calhoun, Mount Lebanon, Syria, accompanying his observations at Smyrna and Bahmdûn:-
"In the summer of 1844, I removed to Syria" (i.e. from Smyrna, Asia Minor), " and as you will see by the continuance of sheet No. 1, and the whole of sheet No. 2, was at a village named Bahmdûn, situated S. S. E. from Beirut, and near the Damascus road. Its elevation I suppose to be between thirty-one and thirtytwo hundred feet, on Mount Lebanon."
"Sheet No. 3 contains the records of Dr. De Forest's observations at Beirut. You will see that his observations for April, May, and June, 1843, were made at an elevation of 213 1-6 feet above the sea, and the succeeding ones at an elevation of about 80 feet."

K.

Extract from a letter from Rev. N. Benjamin, accompanying a collection of observations at Trebizond:-
"The prevailing winds at Trebizond are north-west winds and easterly winds. The sirocco also sometimes prevails. Rain storms, which are very frequent, are almost invariably with a wind blowing from the north-west. The clear and pleasant weather was almost as uniformly with an easterly wind, and I also quite generally observed, that the barometer was lower with an east wind when quite clear, than with a north-west or a north wind accompanied by an obscured sky, and even with rain. So that we had often the extraordinary phenomenon, of the barometer rising as the storm was coming on, and standing very high during a protracted rain, and sinking on the return of clear weather."
"I have not been able to form any satisfactory conclusions in regard to the local causes which affect the direction of the winds at Trebizond, and can only say that the whole country in the rear of that place is mountainous to an unusual degree."
L.

Extract from a letter from Rev. J. F. Lanneau:-
"There are, however, some general remarks which my long residence in Syria and the Holy Land enables me to make concerning the direction of the wind, and other topics alluded to in your letter, and which may be of some interest to you.
"The whole of Palestine is intersected by a chain of hills, or small mountains, rising to an elevation of nearly three thousand feet, and extending north and south nearly midway between the Mediterranean and the Jordan. On the sea-coast, the wind generally blows 'off the land,' or from the east and south-east during the night, and follows the sun, as the day advances, toward the south, south-west, and west, and perhaps one-third of the time continuing on to north and north-west, increasing toward sunset, and, shortly after, dying away to a calm, which lasts until about midnight, when the land-breeze again commences. At Jerusalem, however, and in the hill country of Judea, the direction of the winds is almost always from the north-west during winter and summer, except when the Shileak, the Arabic term for the wind commonly known elsewhere as the Sirocco, or east wind, blows from the desert. So uniformly prevalent is the north-wester, that the olive trees in the interior, situated so as to feel its constant influence, are inclined toward the south-east, and their branches checked in their opposite direction by its force, so that, in some cases, three-fourths, or more of them, are on that side, thus: This is very strikingly noticed immediately around Jerusalem.
"And this leads me to an obvious answer to one of your questions, viz.: 'Are there any local influences that would affect the direction of the wind ?' I have always thought the position of Jerusalem, and that whole region, with the immense evaporation from the Dead Sea, and the Arabian desert to the south-east of it, must be the physical cause of the north-west direction of the wind the greater portion of the year, while the deep gorge in the mountains, extending all the way from the valley of Jehoshaphat and Hinnom to the Dead Sea, occasions a stronger current over the Holy City and the Mount of Olives. The Arabs have a saying, that Jerusalem is the most windy place in the world, the centre of the earth, and thus attracting all the wind there, \&c. During the winter, the south-west wind on the coast, and the north-west wind in the interior, generally accompany a rain,

- though occasionally there is a shower from the south-east. A north wind on the sea-coast always drives away rain, but it is generally a very chilly and uncomfortable one, and is considered by the natives as unwholesome. The rainy season commences about the 1st or 15th of October, and continues until the middle of April. Sometimes a few showers fall in September and May."

M.

For an extract from a letter of the Rev. Justin Perkins, Ooroomiah, Persia, accompanying his observations at that place, see pages 104 and 105.

In regard to the winds at Tabreez, he remarks as follows:-
" At Tabreez, across the lake, which is about seventy miles distant from us (in
a direct line), and nearly east from Ooroomiah, there is daily a strong wind from the Caspian Sea, which is about one hundred and fifty miles north-east of that city. This wind is very invigorating."

N .

Extract from a letter from the same, accompanying observations from Tehran, Persia:-
" Properly to understand these phenomena, it may be well that you have in mind the local situation of Tehran. I will copy a reference to its situation, penned on the spot when I visited it several years ago. 'The local situation of Tehran renders its situation extremely warm, and hemmed in as it is on the north and east by naked mountains, which tower some 5000 or 6000 feet above it in the rear, and the vast extent of arid land in the two opposite directions, reflecting the heat in summer like a burning desert, the city cannot be otherwise than like a great oven during the warm months of the year, not taking into account at all its relative elevation, which is much less than that of Tabreez, and other cities of Azerbijon.'
"I may add to this notice that the Caspian Sea, lying some seventy or eighty miles north of Tehran, though separated from it by a lofty range of mountains, doubtless affects the character and direction of its winds, and still more probably, the immense salt desert that skirts the plain of Tehran, some fifty miles southeast of the town."

0.

When these sheets were first sent to the Smithsonian Institution for publication, the observations from Tehran and Tabreez had not been received, and those previously received from Ooroomiah, gave the mean direction a good deal more southerly. This addition of three new stations, at which the direction of the wind is westerly, may lead us to question whether the southern limit of the zone of westerly winds should not be altered so as to include this region of country.

P.

The reception of Lieutenant Maury's Charts of the North Pacific Ocean, after the entire completion, as was supposed, of the foregoing manuscript, and the kind aid of Mr. Solon Albee, a fellow college officer, in discussing them, and making the necessary computations, has enabled me to add, as an appendix to Series C, Section IV, the following list of resultants, deduced from an aggregate of more than one hundred and sixty-five years' observations. Owing to the probable monsoon character of the winds near the coast, or say within six hundred miles of it, the resultants for each of the several months were computed separately, and from them the mean for the year; but, in mid-ocean, where there was no reason to apprehend any influence of that kind, such precaution was deemed unnecessary, and the resultants were obtained by simply resolving the traverse of all the winds reported, without reference to the time of the year in which they were taken.

The almost entire want of observations during the colder months of the year, north of latitude 40°, necessarily renders the results near the coast doubtful, and
in the vicinity of Sitka and Fort Vancouver, the deficiency was supplied by using observations at those places.

No.	North Latitude.	West Longitade.	Mean direction of Wind.	Rate of Progress.	No. of Ob servations.
31	55° to 60°	130° to 150°	S. $40^{\circ} 58^{\prime} \mathrm{E}$.	212	15633
32	5560	150165	S. 6224 W.?	32	3006
33	5055	125145	N. 859 W.?	35	6937
34	5055	145155	S. 6312 W.?	28	14347
35	5055	155165	S. 4143 W.?	20	6682
36	$45 \quad 50$	120145	N. 7748 W.?	44	2180
37	4550	145155	S. 7311 W.	42	2271
38	$45 \quad 50$	155165	S. 8848 W.	34	1989
39	$40 \quad 45$	120140	N. 647 W.	26	1201
40	$40 \quad 45$	140150	S. 7829 W.	30	1395
41	$40 \quad 45$	150165	S. 7227 W.	26	2425
42	3540	120135	N. 195 W.	34	4066
43	3540	135150	N. 5241 E.	15	2982
44	3540	150165	S. 4128 W.	13	3588
45	$30 \quad 35$	115125	N. 2834 W .	65	1672
46	3035	125135	N. 1856 E .	45	2925
47	3035	135150	N. 8157 E.	30	3873
48	3035	150165	S. 4434 E.	20	7366
49	2530	105125	N. 1451 W.	371	1766
50	$25 \quad 30$	125135	N. 369 E.	64	1117
51	$25 \quad 30$	135150	N. 486 E .	46	1425
52	$25 \quad 30$	150165	N. 7700 E .	48	6606
53	2025	105125	N. 2841 W.	57	3780
54	2025	125135	N. 3340 E.	82	717
55	$20 \quad 25$	135150	N. 5916 E .	75	960
56	20 25	150165	N. 662 E.	68	9245
57	$15 \quad 20$	$90 \quad 110$	N. 180 W.	$37 \frac{1}{2}$	1833
58	1520	110120	N. 229 E.	60	838
59	$15 \quad 20$	120135	N. 367 E.	85	764
60	$15 \quad 20$	135150	N. $54-8$ E.	84	2046
61	1520	150165	N. 6237 E .	72	4656
62	1015	85100	N. 2814 E.	37	944
63	1015	100110	N. 392 E .	37	1078
64	1015	110120	N. $46 \quad 2 \mathrm{E}$.	46	863
65	1015	120135	N. 4128 E.	73	1198
66	1015	135150	N. 5043 E.	86	1569
67	1015	150165	N. 6532 E .	85	2482
68	510	$75 \quad 90$	S. 7154 W.	22	1430
69	510	90105	S. 5139 E.	47	1826
70	$5 \quad 10$	105120	S. $42 \quad 33 \mathrm{E}$.	47	2271
71	$5 \quad 10$	120135	S. 8151 E .	53	1960
72	510	135150	S. $89 \quad 38$ E.	57	1612
73	510	150165	S. 8918 E.	65	3268
74	05	$75 \quad 90$	8. 618 E.	661	14358
75	05	$90 \quad 95$	S. 1859 E.	71	7078
76	05	95100	S. 2238 E.	48	2572
77	05	100105	S. 3827 E.	84	1617
78	05	105110	S. 3944 E .	91	1306
79	0 5	110115	S. $46 \quad 42 \mathrm{E}$.	84	1373
80	05	115120	S. 5213 E .	84	1816
81	05	120125	S. 5630 E .	89	2408
82	05	125130	S. $60 \quad 31 \mathrm{E}$.	84	1782
83	05	130135	S. ${ }^{\prime} 62 \quad 22 \mathrm{E}$.	82	1566
84	05	135140	S. 7515 E.	86	968
85	05	140145	S. $78 \quad 30 \mathrm{E}$.	75	447
86	05	145150	S. 7927 E .	76	738
87	$0 \quad 5$	150155	S. 6948 E .	71	1156
88	05	155160	S. 694 E.	84	1481
89	0 5	160165	S. 7537 E.	81	770

Q.

As Dr. Halley's theory of winds is revived, and advocated with a good deal of ability, in Professor Mitchell's paper, referred to on pages 134 and 138, we will point out some of what we conceive to be objections to it.

1. As applied to the trade-winds, it is entirely inadequate to produce the effects observed. It is on the ocean that the trade-winds are most uniform, and most fully developed. Let us see, then, what the effect would be, if the equatorial parts of the earth were entirely covered with water.

Suppose A B D C to be a section of one of the vortices of Dr. H., or Professor M. (seen from the north side, and drawn in the form of an oblong, instead of an ellipse, for convenience of calculation), in which the lower current moves westward from C toward D , and the upper eastward from B toward A ; and
 let its horizontal length be 100 miles (which is, we presume, as much as they would desire, since the vortices are spoken of as being of " moderate dimensions"), and its height two miles.

Now, the extreme diurnal range of temperature on the surface of that part of the ocean does not ordinarily exceed $1^{\circ} \mathrm{F}$., and the difference between the two extremities of the vortex could not amount to ${ }_{10 \gamma \delta}^{\gamma}$ of 1°. Air expands about $4 \frac{1}{8} \delta$ of its bulk for each degree that its temperature is raised; consequently, the difference in the specific gravity of the columns at the ends of the vortex (A C and
 weight of the air in the entire circuit. But it is this difference only which constitutes the moving force, while the quantity of matter to be moved is the air of the whole circuit. Hence, according to well known principles in mechanical philosophy,
 and is precisely the same as that of a body descending on an inclined plane, whose height is to its length as 1 to 48960000 . Such an inclination, amounting to no more than about $\bar{\delta} \delta \sigma$ of an inch in a mile, would be insufficient to give the slightest appreciable motion to a fluid placed upon it.

Professor M. attempts to meet this objection by the following remark: "That it (the cause in question) is adequate to the creation of a considerable wind, is proved from the fact that it is upon this that the other, or permanent temperature, depends, and that it is what determines the existence of two winds; the land and sea-breezes blowing in opposite directions every twenty-four hours." But neither of these facts seems to be relevant. The tendency of water to resist sudden changes in its temperature, in no way interferes with the accumulation of heat in the equatorial regions, and it is on this that the higher temperature of those parts depends. And in regard to land and sea-breezes, it must be borne in mind, that the diurnal change of temperature on land, is at least thirty times greater than on water.
2. We cannot understand how Halley's theory accounts for the westerly winds that prevail beyond the limits of the trades. The following is the explanation, as given by Professor M., after remarking that the explanation of the trade-winds
"applies to such parallels of latitude only as have the amount of heat communicated to the portions of air lying north and south of them nearly the same, or along which the point of greatest heat, or of heat very little below the greatest, may be supposed to travel from east to west. If," he proceeds, " the excess of heat on one side be moderately increased, the plane of the vortex will be inclined in that direction; but if the excess become considerable, as through the greater part of the temperate zone, the equilibrium will be established in a totally different way. Thus, with regard to the United States, the point of greatest heat first passes south of us, and an impulse is given to the under strata of the atmosphere in that direction, and when, some time afterwards, the columns in the meridians west of us come to be expanded, the air that should have supplied the eastern or trade-wind having passed off toward the equator, the upper or western current descends to the earth, creating a westerly wind, or rather, by the composition of motions in consequence of its mingling with the current that is proceeding southward, a north-west wind, which may be regarded as the natural wind of the parts of the globe lying on the north side of the equator beyond the thirtieth parallel. The same reasoning applies to the other hemisphere. As, however, the natural and gentle flow of the air in this direction is interrupted by evaporation, condensation, and other causes, the result is simply a predominance in those latitudes of winds from the west, and the direction of the pole, over those from opposite quarters."

This whole reasoning appears to me obscure and unsatisfactory.
3. The theory fails to account for the system of easterly winds which seems to exist in high northern latitudes; for, if the above reasoning is sound for the temperate regions, it will apply just as well all the way to the poles.
4. The cause which Professor M. disregards must exist, and he makes no provision for it. We do certainly lnow that a body in motion tends to retain its motion; and that if air, partaking of the easterly motion of the earth due to a higher latitude, were, without any change in its motion, transferred to the equator, it must have a relative motion as from the east. All this we should know even without observation or experiment, and if this cause does not produce appreciable effects, it is incumbent to show how it is neutralized.

The purely cosmical theory, on the other hand, runs to the opposite extreme, and disregards the influence of heat altogether. The views of those who advocate it may, if I understand them, be thus expressed. The absolute motion of a place at midnight, say they, is equal to the sum of the annual and diurnal motions of the earth, while, at noon, it is equal only to the difference ; and hence, that the air, tending to preserve a uniform motion, travels slower than the earth in the former case, and faster in the latter. But the same reasoning would apply if the earth had no annual motion. The place would then move in one direction at midnight, and in the opposite one at noon, making the difference the same as now. We all know that a pail of water whirled around on board a steamboat or railroad car, when the latter was in rapid motion, would present the same phenomena as when at rest. The whole matter is easily understood by recurring to the first principles of central forces. Motion in a circular orbit is neither accelerated nor retarded by a force directed toward the centre of the orbit. Nor will a common motion, communicated
both to the centre and to the revolving body, affect their position relatively to each other. Now, in the case of the atmosphere, the motion in opposite directions just spoken of, is caused solely by the force of gravity, which retains the air about the earth, and prevents it from flying off in a tangent, by virtue of its centrifugal force, but has no effect whatever upon its horizontal motion, nor any tendency to change the relative position of a place on the earth's surface and the superincumbent air. A musket-ball, discharged horizontally with a velocity of about five miles per second, would, if the air were removed, travel round the earth with a uniform velocity, and yet would move in opposite directions at opposite points of its orbit. Nor would its relative position in regard to the surface of the earth be in any way affected by the revolution of the earth around the sun.

LIST OF PLATES.

I. Map of the Northern Hemisphere, showing the position of the meteorological stations24II., III., IV., V., and VI. Wind roses, showing the distribution of the winds at the different stations 108
VII., VIII., IX., and X. Mercator's Charts, showing the mean resultants of the winds at the different stations, both annual and monthly 132
XI. and XII. Mercator's Cbarts, showing the direction and amount of the forces that deflect the wind from its mean annual course in the different months of the year 170
XIII. Winds off the west coast of Africa.-Wind roses, showing the relative force and velocity of the different winds, and the effects of the same on the mean resultants 172

Plate 1

METEOROLOGICALSTATIONS IN THE NORTHERN HEMISPHERE
fioun mbick collectuons ofoberomsions have been obtained for thes memoir
IB The does tudicate the stations
tuth of'sarongs Alagor Nembirk

Flateiil.

Plate iv

Plate V.

PlateVI.

Flas :"'

Plate \mathbb{X}

Plat: XI

Plate IIII Note-The figures annexed to the arrons orpress the number of obsorations from which ther wave computed

FORCE \& TELOCITY OF WINDS
I B. Scale of the arrows 8 miles to an inch

[^0]: ${ }^{1}$ I am happy to learn that the National Observatory, under the direction of Lieut. Maury-to whose labors we are so much indebted for the publication of the Charts of the Winds of the North Atlantic-has prepared, and will shortly publish, similar charts of the North Pacific. When this is done, and when returns shall have been received of the observations taken under the direction of the Smithsonian Institution, in Oregon, California, and New Mexico, we shall be more fully prepared for the study of the winds of the Northern Hemisphere.
 ${ }^{9}$ I exceedingly regret my inability to avail myself, to the extent I desired, of the fund of information contained in these important volumes. The original hourly or bi-hourly records of the directions of the wind are published in full, and without abstracts or condensation, so that the labor of reducing them is very great; and as I had no access to the volumes, except by resorting to distant libraries for the purpose, want of time compelled me to content myself with imperfect abstracts of one or two years only at each station, counting in some cases only every fourth observation. The reduction of the entire series, by some one more favorably situated, would be a valuable service toward developing the meteorology of those comparatively unknown regions.
 ${ }^{3}$ Two separate series of observations were obtained from this station; one taken by the Freuch missionaries, if I mistake not, in the last century, and the other quite recently, under the direction of the Russian Government.

[^1]: ${ }^{1}$ Toronto, Ogdensburg, and Girard College, on this continent; probably the three stations in Boothia Felix; and Greenwich, Devonport, and Sturbington, in England.

[^2]: 1 When this investigation was first undertaken, the author had no idea of ever publishing the results, and proper care was not taken to preserve the name of the person by whom, or under whose direction, the observations were taken, so that in many cases, particularly on the Eastern Continent, I am not able now to give appropriate credit.

[^3]: ${ }^{1}$ This station is just without the Aretie Circle.

[^4]: I Including Fremont's tour. 2 Not including two stations in Iceland. . 3 Including voyages.

[^5]: ${ }^{1}$ For separate abstracts for these years, both armual and monthly, see Annual Reports of the Regents of the Univer-

[^6]: ' July 1 to December 81, 1840, and January 1 to June 80, 1845.

[^7]: ${ }^{1}$ For abstracts for these years separately, see published volumes of the U. S. Army Meteorological Register.
 ${ }^{2}$ The following is an extract from a letter of Prof. McCay accompanying the observations:-
 "I do not think there is any local cause for our winds. There are no mountains within 60 or 70 miles-no regular ridges for a still greater distance. The country is undulating, with no changes of elevation amounting to 500 feet in a circle around us of 50 miles. The river near us is very small. Its course is very irregular, sweeping round us in a semicircular course. Other streams near us have a general course to the S . E., nearly S .

[^8]: ${ }^{1}$ For abstracts for these years separately, see the published volumes of the U. S. Army Meteorological Register.
 ${ }^{2}$ Two independent registers.
 3 The numbers in this column are the original observations reduced in the direction of the cardinal points.

[^9]: ${ }^{1}$ For abstracts for these years separately, see the published volumes of the U. S. Army Meteorological Register.

[^10]: ${ }^{1}$ For abstracta for these years separately，see the published volumes of the U．S．Army Meteorological Register．

[^11]: ' January 1 to June 18, 1848, and November, 1849.
 Note. -I am indebted for the foregoing observations to Rev. Justin Perkins, who, in his letters accompanying them, dated February 19, and July 22, 1848, has given the following description of the place of observation, and of the local nfluences to which it is subject.
 " My residence is on the north-eastern declivity of a high mountain. This location may, perhaps, affect the direction of the wind here somewhat, though probably not a great deal. There are, however, some important local causes

[^12]: ${ }^{1}$ Elevation 1,200 feet，surrounded by mountains two or three thousand feet above the level of the sea．

[^13]: ${ }^{1}$ In this table no allowance is made for the relative force of the different winds, the only element taken into account being their duration or time of blowing.

[^14]: Fremont's Exploring Tour.

[^15]: ${ }^{1}$ A fraction of a year.

[^16]: 1 The winds at Toronto (one of these fourteen exceptions, and the greatest of them all) are very remarkable, and deserve special notice, as they were observed hourly, or bi-hourly, both by day and by night, for two years, with the utmost care, and with the most perfect instruments. And yet, the results are widely at variance with those which we find elsewhere in the same region, the mean direction being, as stated in the Table, N. $10^{\circ} 23^{\prime} \mathrm{W}$., and the rate of progress only 6 per cent.; both indicating the existence of some powerful disturbing influence there. It is true that this result has reference only to time, but if we make the computation from the distance actually travelled, though it in some measure relieves the difficulty, it by no means removes it, as will be shown hereafter.

[^17]: ${ }^{2}$ The locality of this station is very doubtful.
 ${ }^{9}$ Mitchell's Article in Journal of Science and Arts, vol. xix. p. 254.
 ${ }^{3}$ I am not without hope of obtaining Lieutenant Maury's results before these sheets go to press, and if so, they will be inserted on Plate VII.

[^18]: ${ }^{1}$ This remark is thrown out rather as a conjecture, which future observations may or may not verify.

[^19]: 1 In a letter to the author, from Rev. J. F. Lanneau, who long resided in Syria and Palestine, he remarks as follows, in relation to the north-west winds in the " hill country" of Judea: "So uniformly prevalent is the north-wester, that the olive-trees in the interior, situated so as to feel their constant influence, are inclined toward the south-east, and their branches checked in the opposite direction by its power,
 so that in some cases three-fourths or more of them are on that side, thus

 This is very strikingly noticed immediately around Jerusalem."
 a Rev. H. G. O. Dwight, to whom I am indebted for the observations on the winds at this place, makes the following remarks in relation to them: "There can be no doubt of the fact that the wind here, as a general thing, blows either from the north-east or from the south-west. A wind direct from either of the four cardinal points, never continues long in Constantinople. During the fifteen or sixteen years that I have been here, I have noticed that our prevailing wind in summer is northeast. Indeed, from July to October, it is so constantly and regularly from that quarter, as to be almost a monsoon."
 ${ }^{3}$ See the remarks on the winds at this place in Series B.
 4 Piddington.

[^20]: ${ }^{1}$ Professor Dove, of Berlin, maintains that there are but two systems, viz. our 1st and 3d. See his Jetter to Col. Sabine, published in the Report of the British Association for 1845.

[^21]: ${ }^{1}$ I am aware that it may be urged as an objection to this view, that both the causes which are supposed to determine the lower current toward the south-west, "operate with greater energy between the parallels of 30° and 60°, than within the actual limits of the trade winds." (Mitchell.) But it should be noticed,

 - $\quad 1$ 1st, that even if this were true, the causes which determine the upper current are increased in the same ratio, and it is on the difference of the two only, that the mean direction depends. And 2d, that the objection itself is not well founded, so far as one of the causes is concerned; for, according to our views, the zone of westerly winds lies wholly in the northern half of the vortex, where there could be no permanent ascending currents, as at the equator, to create trade winds.

 It may be farther objected, that the theory here advocated requires an excess of northerly over southerly winds in the temperate regions, so as to dispose of the current coming down from high northern latitudes. We admit it, and are we sure that there is not? It is true that, in respect to time, the mean direction of the wind in those parts of the zone that have been most fully studied (viz. the United-States, Western Europe, and the Atlantic Ocean), is from a point somewhat to the south of west. But are we sure that it is not compensated by north-westerly winds over Asia and the North Pacific? This is a question of fact, to be determined by observation. Thus far the indications are, that there is such a compensation, and we await with interest the results of Lieutenant Maury's investigations in that quarter of the globe to settle the question. Furthermore, are we sure that even in the parts of the zone first referred to, more air passes northward than southward? On this point Professor Dove, of Berlin, has the following remarks, in a letter to Colonel Sabine, published in the Report of the British Association for 1845: "But the air which passes over the parallel, coming from the equator, brings with it a higher temperature, which it gradually parts with as it flows over the surface of the earth, and which it cannot, therefore, bring back with it,

[^22]: ${ }^{1}$ In computing the annual curves, it became necessary to fix upon some general principle, upon which to compare and combine the observations taken at different places, and I adopted that of allowing equal weight to the observations of each month, without reference to the manner in which they were taken. There is no doubt that more reliance should be placed upon observations taken several times a day and recorded for sixteen or thirty-two points of the compass, than upon those taken less frequently and recorded less minutely, but it was difficult to decide how much.

[^23]: Same as No. 63, with the addition of two months' observations at other islands.
 2 These results are obtained from observations for nine months at Barbsdoes, three months at Porto Cabello, Venezuela, one month at Chagres, New Grenada, and twenty-six days at sea near the coast. -
 ${ }^{\text {a }}$ The mean directions are copied from Professor Loomis's article in the Journal of Science and Arts. The numbers in the columns headed "Rate of Progress," express the ratio that the resultants bear to the sum of the winds, after being resolved in the direction of the cardinal points, and are somewhat less than if they had been computed from the original observations.

[^24]: ${ }^{1}$ Copied from some source not now recollected.

[^25]: ${ }^{2}$ Five years at Nashville, two at Chapel Hill, in North Carolina, and ten months at other places.

[^26]: ${ }^{1}$ It would be more convenient for comparison if all could be drawn on the same scale, i. e. if the curves could be drawn upon a scale three times larger than they are; but they could not in that case be represented upon the maps without making the latter of unwieldy size.
 ${ }^{2}$ No. 30 should properly be placed farther west, as the places whose results it represents are scattered pretty uniformly over the southern half of the State of New York.

[^27]: ${ }^{1}$ Loomis on the Meteorology of Hudson, Ohio, published in the American Journal of Science and Arts.

[^28]: ${ }^{1}$ By Foster＇s Anemometer．

[^29]: ${ }^{1}$ More strictly 5.8 miles.

[^30]: ${ }^{1}$ In possession of E. Pickens, Selma, Alabama

[^31]: ${ }^{1}$ In the archives of the Royal Society, London.

