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PREFACE

The design of this treatise, is to explain the " rationale" of some

of the most interesting astronomical calculations, in such a way
that the student may clearly see the reason of every step, and its

connection with the theory. In this respect it differs from many

others, which give the rules for calculating merely, without any

explanation of the reason of them. Being partly designed as a text

hook for colleges, the author has endeavoured to adapt it to the

design of college education, which is not so much to make adept

practitioners in any particular science, as to give broad and com-

prehensive views of the whole field. Hence, the principles of the

several sciences should be thoroughly understood by the student ;

but the application of them to practice by mere rules is foreign to

the design of a collegiate course of study. If, therefore, the calcu-

lations of astronomy are attended to at all in college, it should be

in such a way, that the connection with the theory may be appa-

rent, and that the two may mutually illustrate each other. In

many of treatises for colleges, this point seems to be overlooked.

Some of them contain tables for astronomical calculations which

are very minute and accurate, and at the same time, so constructed

and arranged as to reduce the labour of calculation as much as

possible ; but the student can see no connection between them and

the motions and perturbations which occupy his attention in the

study of the theory. In fact, one who has studied the theory with

ever so much thoroughness, has here very little advantage over

one who is entirely ignorant of it ; each being guided wholly by
rules that must appear entirely arbitrary.

Such tables not being adapted to the design of this treatise, the

author found it necessary to prepare a set differing somewhat in
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their construction from those in ordinary use. They are based,

for the most part, on those of Delambre and Burg, with the more

recent improvements of Airy and Bessel ; but varied in the plan of

construction so as to adapt them to this work. Calculations may
be made from them sufficiently accurate for the ordinary purposes

of an almanac ; yet, as they are not designed especially for that

purpose, the aim has been not so much to secure extreme accuracy

in the results, as to render them easily understood.

The quantities in the tables are given, for the most part, in

degrees and decimals, instead of signs, degrees, minutes, and sec-

onds, with a view to facilitate the labour of calculation, and to

secure the same degree of accuracy with a less number of figures.

The work is intended to be complete in itself, on the subject on

which it treats, for those who have a general knowledge of the

motions of the heavenly bodies ; yet, it would, doubtless, contribute

to a better understanding of it, to read some such work as Olm-

sted's or Herschell's Astronomy previously.

Williams College, October, 1843.
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earth. The angle MES, is not difficult of cpmputation, being

equal to SEA+MEC+AEC, the latter of which is equal (Euc.

1, 32) to ECB—EAB. Hence, MES=SEA+MEC+ECB—EAB,
all of which are easily found. The two former are the apparent
semidiameters of the sun and moon, as viewed from the earth, and

the two latter the semidiameter of the earth, as viewed from the

moon and sun, or, respectively, the moon's and sun's horizontal

parallax. On account of the distance of the sun and moon from

the earth not being constant, the angle MES is subject to a varia-

tion in size, being sometimes 1° 38', and at other times not more

than 1° 14'. The reader will perceive that, when the sun and

moon are in conjunction, the angle MES is the moon's latitude ;

and the conclusion to which we have just arrived, may be express-

ed thus : If the latitude of the moon, when new, is less than 1° 38'

there may be an eclipse of the sun, and if it is less than 1° 14' there

must be one.

Fig. 2.

4. Again, let S (Fig. 2) represent the centre of the sun, E that

of the earth, and M that of the moon, just impinging upon the

earth's shadow. The angle MET, as represented in the figure, is

plainly the least possible, without producing a partial or total

eclipse of the moon. The angle MET=MEF+FET, both of

which can be easily computed. The former is the moon's appa-
rent simidiameter, as seen from the earth, and FET is that of the

section of the earth's shadow that eclipses the moon. Now, (Euc.
1, 32,) FET=BFE—FHE and FHE=AES—BAE ; therefore,

FET=BFE+BAE—AES, the two former of which are the lunar

and solar parallaxes, and the latter is the sun's apparent semidiam-

eter, as seen from the earth. That is, the apparent semidiameter of
the section of the earth's shadow thai eclipses the moon, is equal to

the sum of the parallaxes of the sun and moon, diminished by the

sun's apparent semidiameter. And if this angle be increased by
the moon's apparent semidiameter, MEF, we shall have the whole

angle MET, which is the least latitude the moon can have in oppo-
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sition, without being eclipsed. This angle varies in size, like the

analagous one in solar eclipses, just described, and for the same

reason. Its maximum value is 1° 4', and its minimum 50'.

5. The centre of ihe section of the earth's shadow that eclipses

the moon, must be situated in the plane of the ecliptic, directly op-

posite to the sun, and must, therefore, be at the same distance from

one of the moon's nodes that the sun is from the other. Now, we
wish to know how near the sun, in its annual course, may approach
to one of the moon's nodes, without occasioning eclipses ;

or. in

other words, at what distance from the node the moon's track and

the ecliptic will have diverged, so as to be from 1° 14' to 1° 38'

apart, if our inquiry relates to solar eclipses
—or, from 50' to 1° 4'»

if it relates to lunar.

6. Let AN (Fig. 3) represent a

portion of the ecliptic, BN a por-

tion of the moon's orbit, SM a por-

tion of a secondary to the ecliptic,

and N one of the moon's nodes. Then, in the right angled spheri-

cal triangle, SMN, we have the angle SNM=5° 7' 47".9,* and for

solar eclipses, the arc SM=1° 14' to 1° 38'. With these data, we
find NS to be from 13° 14' to 19° 42', according to the value we

give to SM. Hence, if the sun is within 19° 42' of the moon's

node, on either side, at the time of new moon, it may be eclipsed ;

and if it is within 13° 24', it must be. These distances are called

the solar ecliptic limits.

Since it takes the sun more than a lunar month, usually, to pass

over one of these arcs, it follows, that it must be eclipsed at every

passage, and, consequently, twice a year, at least. It may be

eclipsed twice during one passage ; once, just after it enters the

ecliptic limits, and again, just before it leaves them : but, if so, both

of the eclipses will be small, and not central upon any part of the

earth.

7. For lunar eclipses, the arc SM is 50' to 1° 4', and, by the

same process as above, we find the lunar ecliptic limits to be, irom

7° 47" to 13° 21' on each side of the node.f They embrace an

* This angle is subject to a slight variation, amounting, at it3 maximum, to 6' 47".lo.

t Baiiy.
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arc considerably less than is passed over by the sun in one luna-

tion, so that it often happens, that the sun passes the node without

there being any lunar eclipse.

The lunar ecliptic limits being so much less than the solar,

eclipses of the moon must be proportionably less frequent; yet,

since a lunar eclipse is always visible over half the earth's surface,

while one of the sun can be seen only over a very much smaller

section, there will, on an average, be a greater number of visible

eclipses of the moon, at any given place, than of the sun,

.8. As the moon's nodes are 180° apart, or, in opposite points of

the ecliptic, the interval between eclipses occurring at one node,

and those occurring at the other, must be about six months. Also,

since the nodes move backward about 19° in each year, eclipses

must happen, on an average, nearly three weeks earlier every year
than they did on the year preceding. The reader will see that

these conclusions are verified by past experience, if he will take the

trouble to examine the almanacs of former years.

CHAPTER II.

MEAN TIME OF AN ECLIPSE, AND THE MEAN LONGITUDES AND ANOMA-

LIES OF THE SUN AND MOON.

9. The sun, in its apparent annual course, leaves the vernal equi-

nox where its longitude is 0°, about the 21st of March, and moves

eastward, towards the moon's nodes, about 1° each day. Conse-

quently, it must arrive at either node, in about as many days after

the 21st of March, in any given year, as the longitude of the node,

in that year, contains degrees. At the next new moon before or

after the date thus found, (more frequently the former.) there will

be an eclipse of the sun. It is probable, though not certain, that

there will also be a lunar eclipse at the nearest full moon. It will

occur then if at all at that passage of the node.

10. The velocity of the motions of sun and moon in their respect-

ive orbits, is variable ;
but it is more convenient in astronomical

calculations to regard it as uniform, and to make the necessary cor-

rections for the inequalities afterward.
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11. To explain the method of calculating the time of an eclipse,

we will take, as an example, the solar eclipse that will occur when
the sun passes the moon's ascending node, in the year 1854, Ta-

ble 2d, at the end of this volume, contains the time of new moon
in March of that year, as well as of every other during the present

century, and the longitude of the sun, moon, and moon's ascending

node, all calculated on the supposition of a uniform rate of motion.

It also gives the .mean anomolies of the sun and moon, i. e., the dis-

tance of each from its perigee. The longitude of the descending
node may be found by adding, or subtracting, 180° to, or from,

that of the ascending node. We might compute all these quanti-

ties from the data given in table 1st, but table 2d supercedes the

necessity. Although some of them will not be used in this chapter,

it is most convenient to take them all out together, and write them

as below. The longitude of the node on that year (see right hand

column of the table) is 64°.2158 ; consequently, the sun will arrive

at it about 64 days after the 21st of March, which carries the time

to May 24th. The eclipse in question will occur at the new moon
nearest that time. Entering table 3d,*' we next take out such a

number of lunations (in this ease, two) as, when added to the time

ofnew moon in March, will bring it near to the time when the sun

reaches the moon's node, and write it down, with the longitudes

and anomalies, under the corresponding quantities already taken

from table 2d. These must be added together, (with the exception
of the right hand column, where the lower number must be sub-

tracted from the upper, because the motion of the node is retro-

grade,) and we thus obtain the time of mean new moon in May.
The following shows the operation :

—

Mean new moon in March,...

Add two lunations,

Mean new moon in May,

Time.

h. ?n. s,

28 10 42 50

59 1 28 6

26 12 10 5t

Sun's
Anom-
aly.

85.586

58.21 1

143.797

Sun's

Longi-
tude.

6°0194

58.2135

Moon's
Anom-
aly.

93.665
51.634

64.2329|145.299

Moon's I Longi-
Longi- tude of
tude. Node.

6.0194 64°2158

58.2135l-3.1275

64.2329 i 61.0883

Table 5th shows the month and day to which any number of

days found by the foregoing addition corresponds.

At this stage of the calculation, it is well to compare the longi-

tude of the sun and moon with that of the node, and if they do not

* Table 3d shows the length of any number of mean lunations, from one to thirteen,

with the mean motions of the sun and moon, both in longitude and anomaly, during the

same
; also, the mean motion of the moon's nodes.
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differ more than 20°, there may be an eclipse, though there will not,

probably, be one, if the difference is over I62 . If the difference is

too great, it shows that too many lunations were added, or too few,

and a correction must be made accordingly. A difference of over

11° shows that another eclipse, at that passage of the node, is pos-

sible, but not probable, unless it is as much as 14°.

12. At the time of new moon, the longitudes of the sun and moon
must be equal, and, according to our calculations, they are so at

the time of the*mean new moon in May just found. But this is on

the supposition, that their motions were uniform. To find whether

or not their longitudes are truly equal, we shall proceed, in the fol-

lowing chapters, to compute them, taking into account all the chief

inequalities in their motions ; and, if they come out alike, the time

of new moon is correctly found ; otherwise, we shall have to add

or subtract such an amount of time, as, with the relative velocities

of the sun and moon, at the time, will render them equal. As a

preparatory step, it is necessary to know, more accurately, the

the moon's anomaly, and the longitude of its node.

The progressive motion of the moon's perigee, and the retro-

grade motion of its nodes, being both caused by the sun's attrac-

tion, are most rapid when the sun is in its perigee, and constantly

grow slower and slower, till the sun reaches its apogee, where the

motion becomes the slowest. Consequently, as the sun leaves its

perigee, the moon's perigee immediately gets before, and its nodes

behind their mean place, and continue so till the sun reaches its

apogee, when, owing to the diminished rate of motion, their mean

and true places again coincide. The contrary takes place when

the sun is in the other half of its orbit. Hence it is apparent, that

the moon's anomaly, being reckoned from its perigee, must be less

than the mean when the sun's anomoly is less than 180°, and great-

er when greater ; showing that something must be subtracted from

the moon's anomaly in the former case, and added in the latter.

The same must also be true of the longitude of the moon's nodes.

These facts are indicated in Tables 6th and 7th, by the signs
—

and + placed at the head of the column containing the argument.

By the term argument, is meant that quantity on which others

depend, and which determines their value. Thus, in this case, the

sun's anomaly determines what correction must be applied to the

moon's anomaly, or to the longitude of its node, and is, therefore,

the argument.
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13. Entering tables 6th and 7th, with the sun's anomaly as an

argument, we will take out the corrections which the foregoing

considerations show to be necessary, and which are denominated

Annual Equations of the moon's perigee and node, (taking care to

make a proper allowance for the odd degree and decimals of the

anomaly, as the tables give the equation only for every two de-

grees,) and apply the former to the moon's anomaly, and the latter

to the longitude of the node, according to the sign -f- or — at the

head of the column of the argument. Observe in these, and most

of the other tables, that the unit figure of the argument is placed
at the top or bottom of the table, and the other figures at the right

or left. When the latter is found at the left, we must look for the

former at the top, but when the latter is at the right, the former must

be sought for at the bottom. Opposite the latter, and in the same

column with the former, the equation is found. Thus, in our

eclipse, the sun's anomaly being 143°.797, we look for the number
14 in the left hand column, and for 3 at the top. But, since

the latter number is not found, the equation being given in the ta-

ble only for 142° and 144°, we must note the difference between

these equations, and take a proper proportion of it for the excess of

the argument over 142°, viz. 1°.797. By this process, we find the

annual equation of the perigee to be —0°.221 ; and of the node
—0°.875. These, applied to the moon's anomaly, and the longitude
of the node, make the former 145°.078, and the latter 61°.0008.

CHAPTER III.

EQUATION OP THE CENTRE.

14. The first inequality in the apparent motions of the sun and

moon that claims attention, results from the eliptical form of their

orbits, in consequence of which their motion is accelerated while

passing from apogee to perigee, and retarded in the other half of

their orbits, moving quickest in perigee, and slowest in apogee.
The reason of this it is not difficult to discover.
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Let AGH, &c. (Fig. 4) represent the

moon's eliptical orbit, A and B the apsides,

and E the earth. Let the moon start from

perigee, at A, with its swiftest motion, and

consequently with its greatest centrifugal

force. The attraction of the earth, at E,

not being able to retain it at that distance,
G ' H

it immediately begins to recede along the

curve AGH. Being constantly pulled back by the earth's attrac-

tion, since the angle EGH is obtuse, its motion is retarded, and

when it approaches the apogee, at B, its velocity has become so

much diminished, that the attractive force of the earth prevents it

from receding further. It thus arrives at apogee with its slowest

motion. Leaving B with a weak centrifugal force, the superior
attractive power of the earth at E, immediately begins to draw
the moon toward itself along the curve BOD, constantly hurrying
it onward at every point, as O, the angle EOD, contained between

the direction toward which it is drawn, and that toward which it

moves being now acute. By the time it reaches A, its velocity
becomes so much increased, that it is prepared again to leave peri-

gee in the same condition as at first, to pursue another similar

round.

15. We shall arrive at the same conclusion, if we apply the prin-

ciple, that when a body is retained in its orbit by a force directed

toward a fixed point, as the moon is toward the earth in this case,

the radius vector must describe equal areas in equal times. Hence
the moon must move slower when it is near B, than when it is

near A, in about the same ratio that its distance from the earth is

greater. Not only is the absolute velocity greatest in perigee, but

the angular velocity, with which only we are now concerned, is

rendered still greater, by reason of the diminished distance.

The same reasoning will apply, in every respect, to the earth

revolving in an eliptical orbit round the sun, and hence to the ap-

parent motion of the sun round the earth.

16. If we consider the mean place of the sun and moon to be

their true one, when in perigee, it will be, also, when in apogee ;

because each half of the orbit is described in the same time ; but,

as they start from perigee with their swiftest motion, they thus get

ahead of their mean place, nor do they, though constantly retarded,
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lose what they had gained, till the moment they arrive at apogee.

Also, as they pass the apogee with their slowest motion, they di-

rectly get behind their mean place, and it is not till the moment

they reach the perigee, that the continued acceleration of their

motion, in this half of their orbits, enables them to gain up what

they had thus lost. Consequently, they must always be ahead of

their mean place, when in the former part of their orbits, and behind .

it in the latter. This difference between the mean and true place

of the sun or moon, is termed the equation of its centre.

17. It is necessary to know in which half of their respective

orbits the sun and moon are found at the time of our predicted

eclipse : for, if either is moving from perigee to apogee, i. e., if its

anomaly (4) is less than 180°, we must add something to its longi-

tude already found, (11,) but subtract if in the other half of its orbit,

i.e., if its anomaly is over 180°. The manner of computing the

precise amount, will occupy our attention in another chapter. It

is sufficient, here, to remark, that if, at any time, a line, OC, be

drawn from the mean place of the moon to the centre of the elipse,

the angle EOC, which this line makes with the radius vector, is

very nearly equal to one-half the angular distance by which the

moon is before or behind its mean place : so nearly that some au-

thors have given this as a method of computing the equation of the

centre. We shall use it hereafter as a convenient approxima-
tion. For the present, we will dispense with the labour of compu-
tation, and take the equation directly from tables already prepared.

By the calculations in the last chapter, (11 and 13,) we found

that the sun's anomaly was 143°.797, and the moon's, as corrected,
145°.078. It appears, then, that each is moving from perigee to

apogee, and is, therefore, ahead of its mean place, so that we must
add something to their respective longitudes ; with these anoma-

lies, respectively, as arguments, we may now enter tables 8th and

9th, in the same manner as we did tables 6th and 7th, and take out

the equation of the centre of the sun, and of the moon, applying the

former to the the sun's longitude, and the latter to the moon's. The

equations we find to be + 1M165 and +3°.4154, and the resulting

longitudes 65°.3494 and 67°.6483.

2



18

CHAPTER IV.

PERTURBATIONS IN THE MOON's MOTION. ANNUAL AND SECULAR EQUA-

TIONS OF LONGITUDE.

18. In the preceding calculations, we first regarded the sun and

.moon as revolving in circular orbits, with uniform angular velocity ;

then, in elipses, describing equal areas by the radius vector, in

equal times : but neither of these suppositions is strictly true. The
sun's attraction disturbs the motion of the moon round the earth,

producing numerous inequalities.

The method of calculating these, will be treated of in another

place. It will be sufficient for our purpose, here, simply to give
the theory of them, and then take the corresponding corrections

from the tables.

19. The most obvious effect of the sun's attraction, is to draw
the moon away from the earth, and thus enlarge its orbit. If this

influence were always the same, it would occasion no inequality :

but when the sun is in perigee, it is nearer to the earth, and conse-

quently to the moon, than at other times ; and the moon, therefore,

will be more attracted by it. The moon being thus drawn farther

away from the earth, when the sun is in this situation, and its peri-

odic time consequently increased, it must fall behind its mean place.

And although the attractive force of the sun diminishes as it leaves

perigee, allowing the moon to contract its orbit and lessen its peri-

odic time, it will not gain up what it had lost till the moment the

sun reaches apogee. By similar reasoning, we may see that the

moon must always be in advance of its mean place, so far as this

cause is concerned, when the sun is in the other half of its orbit.

There must then be applied to the moon's longitude a correction

depending on the sun's anomaly ; .being additive when the anomaly
is less than 180°, and subtractive when it is more. Such a correc-

tion is supplied in table 10th, entering which, with the degrees of

the sun's mean anomaly, in the manner described in article 13th,

we find the equation to be -.1118, which is to be applied both to

the moon's longitude and anomaly,* for the cause we have been

considering obviously affects both alike. The same is true of most

* The anomaly contains but three decimal places ; hence, in applying the corrections

to it, the 3d figure is given according to its nearest value.
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of the other corrections that remain to be applied. The longitude,

as already obtained, (17,) is 67°.6483, and the anomaly (13)

145°.078. Applying trie above equation, they become 67°.5365,

and 144°.9G6 respectively.

20. Connected with the foregoing inequality in the moon's mo-

tion, there is another of great historical interest, from the theories

to which it formerly gave rise, viz., the acceleration of the moon's

mean motion. It is too small to be discovered by direct observa-

tion, but becomes quite sensible in the lapse of ages.

21. Dr. Haliey, wishing to know the precise length of a lunation,

went back to the ancient Chaldean observations, intending to ascer-

tain how many new moons had occurred between that time and

his own, and then to divide the time by this number, which would

give the average length of each. But he was surprised to find

that a lunation in those days was considerably longer than now.

By comparing the Chaldean, Alexandrian, Arabian, and the pre-

sent observations, he found that the lunar period grew successively
shorter.

22. Astronomers doubted the fact when it was first announced ;

but when they became satisfied of its truth, they set themselves to

work to account for it. The most probable theory was, that the

moon revolved in a resisting medium, which would cause it gradu-

ally to fall toward the earth, and thus, by reducing the size of the

orbit, make the periodic time less. It must seem paradoxical to

those who have not thought upon the subject, that such a cause

could produce the effect in question ; and that the retarding of the

motion could make it revolve in less time. But it should be con-

sidered, that by diminishing the moon's velocity, its centrifugal

force is diminished in a more rapid ratio, which would allow the

earth to draw it nearer to itself, and reduce the size of the orbit.

And it is demonstrable, that the gain in time from the latter cir-

cumstance, would more than counterbalance the loss from the for-

mer ; so that on the whole, the moon's period would be shortened.

The objection to this theory is, that comets, which are proved
to be extremely light bodies, pass through this medium w^ith little

or no resistance. Hence it was inferred that the cause, if it exist-
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ed at all, was not sufficient to produce the effect of which we arc

speaking.
Other theories were advanced, but none were satisfactory ; and

it was reserved for La Place to explain the true reason of this ac-

celeration of the moon's period, about sixty years ago.

23. Owing to the attraction of the other planets, the earth's orbit

is gradually becoming less and less eliptical, or, nearer and nearer

to a circle ; so that the sun is every year about 39| miles nearer

the centre of the elipse than it was on the year before. At this

rate, the earth's orbit would become a circle in 40,315 years ; an

event, however, that can never take place, for long before such a

period shall elapse, the change of which we are speaking, and
which is only an inequality of long period, will have reached its

limit, when the eccentricity of the orbit would again increase.

24. If it can be shown that the sun's attraction diminishes the

moon's gravity toward the earth, and thus increases the periodic

time, more than it would do if the earth revolved in a circle at the

same mean distance, it is manifest that so long as the change in the

shape of the earth's orbit, of which we have just spoken, goes on,

the moon's periodic time must grow less and less.

Let ADBE (Fig. 5) represent an elipti-

cal orbit, S the attracting body, placed in

one of the foci, C the centre of the elipse,

and F the other focus. It can be demon-

strated, that the mean distance of S from all

points in the orbit, is equal to AC or CB.

Take any two points in the orbit G and H,

equidistant from B and A. We propose to prove that the average
attraction of S upon the moving body, when at these points, is

greater than it is when the body is at its mean distance. And
since these are any points in the arcs AD and DB, if we prove it

for them, we prove it for the whole orbit.

Join GS, GF and HS, and let SG bear any ratio, other than that

of equality, to GF; say 6 : 4. Then, since by the properties of the

elipse SG-fGF=AB=2CB, it follows that the ratio of SG to CB
is 6 : 5, and of GF, or its equal HS, to CB, 4 : 5. Therefore, since

the force of gravity is inversely proportioned to the square of the

distance, the attraction at the former point will be §£, and at the
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latter
f-f of what it is at the mean distance. The average between

them is fff of the attraction at the mean distance,—exceeding it

Now the earth's orbit is much nearer circular than we have

supposed this to be, and the excess of attraction must be propor-

tionably less : but still there must be an excess, so long as it is

eliptical at all. Hence, as the earth's orbit becomes nearer circular,

the sun's attraction upon it, and consequently upon the moon, must

continually grow less, allowing the orbit of the latter to contract.

This would diminish the periodic time, and produce the very effect

that excited so much wonder in the mind of Dr. Halley, and the

astronomers of his time.

25. The tables for this work are based on the moon's motion, as

it existed in the year 1800, and we must, therefore, add to its lon-

gitude and anomaly the amount gained since that time, from the

cause just explained. Table 11th contains the required correction,

calculated at intervals of five years, during the present century.

Look for the year in the left hand column of the table, except the

unit figure, which is placed at the top, and opposite to the former,

and under the latter will be found the correction required, express-
ed in decimals of a degree, the first two places, which are ciphers,

being omitted.

The correction for the year 1854 is .0009, which, added to the

longitude and anomaly already found, (19,) makes the former

67°.5374, and the latter 144°.967.

CHAPTER V.

PERTURBATIONS IN THE MOOn's MOTION, CONTINUED. VARIATION.

26. The moon's motions grow more complicated the farther we

proceed. To investigate them thoroughly, is nothing less than a

solution of the famed Problem of the Three Bodies. The moon's

orbit, which we first regarded as a circle, and then an elipse, we
shall now find to be neither a circle nor an elipse,* but an irregular

* This statement seems to conflict with former ones, where the eliptical form of the

moon's orbit was asserted; but its mean shape was then intended, without taking into

account the irregularities.



22

oval shaped figure, which is constantly changing its form. The

prospect before us, in trying to reduce such irregularities to order,

so as to see their precise influence on the moon's longitude, is suffi-

ciently appalling, but nevertheless, let us not be deterred from the

attempt.

To avoid misapprehension, it ought perhaps here to be remark-

ed, that these irregularities are not of such a nature as to set aside

our previous work, but only show that, under some circumstances,

they may occasion necessary corrections.

•27. And first let us, in this chapter, see what the shape of the

orbit would be, and how the moon would revolve in it, on the sup-

position that it was originally a circle round the earth, but drawn

out of shape by the sun's attraction. We shall in this way disco-

ver the cause of an observed inequality in the moon's motion, de-

nominated variation, and discovered by Tycho Brahe, A. D. 1590.

The modifications that the orbit would undergo, by supposing the

original figure an elipse instead of a circle, will occupy our atten-

tion in the next chapter.

28. Let S (Fig. 6) represent the sun, E the earth, and ADCB
the moon's orbit ; and let us suppose, for a moment, that the moon,

retains a circular orbit. Let D represent the place of the moon at

conjunction, C at apposition, and A and B when it is at the same

distance from the sun that the earth is, or very nearly in quadra-

ture.

First, let the moon be at A or B, in which case the moon and

earth being equally distant from the sun, must be equally attracted

by it, and consequently there would be no tendency to change
their direction from each other, but only to draw them nearer to-

gether, which would be precisely equivalent to increasing the earth's

power of gravity.

Next let it be in conjunction at D. Now the earth and moon

are both in the same direction from the sun ; but the moon being

nearest is more attracted, in the inverse ratio of the square of the

distance, i. e., SE2
: SD2 - The only effect, therefore, is to draw

the moon directly away from the earth, by virtue of the difference

in the attractive forces, which would be equivalent to diminishing

the earth's attraction.



29. Again,
— suppose the moon at any point M in the quadrant

AD. Being nearer to the sun than the earth is, it is more attract-

ed by it, and the effect is nearly* the same as though the earth was

not attracted at all, but the moon drawn along the line MS by a

force equal to the difference of the attractions. The direction of

this force, making an acute angle with that in which the moon

moves, must accellerate the motion in its orbit; and the same

would be true of every point in the quadrant AD. If the moon

were at M' any point in the quadrant DB, the difference of attrac-

tions acting along the line M'S, would tend to retard its motion.

Once more : let the moon be at any point M" in the quadrant

BC. Being further from the sun than the earth is, it is less attract-

ed by it, which is nearly as though it were drawn in the opposite

direction, along the line M"L. The effect would be to accelerate

the motion, in nearly the same manner as in the quadrant AD. If

the moon was at any point M'" in the quadrant CA, the difference

of attractions acting, as it were, along the line M'"N, would retard

its motion.

Thus the moon is alternately accelerated and retarded in the

differant quadrants ; moving swiftest in syzygy and slowest in

quadrature. Hence, from this cause alone, the moon would be in

advance of its mean place while passing from syzygy to quadrature,

and behind it while passing from quadrature to syzygy.

80. But the above is not the only reason. We have thus far, in

the present investigation, supposed the moon's orbit to retain its

circular form, notwithstanding the disturbing influence of the sun :

but this is not possible. To retain a body in a circular orbit, the

centripetal and centrifugal forces must be equal. But we have

just seen that the velocity in syzygy, as at C and D, (Fig. 7,) is

*
Sufficiently near for our present purpose. The subject will be investigated more

critically hereafter.
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greater than at A and B : and as the centrifugal force is propor-
tioned to the square of the velocity, it must be greater. On the other

hand, it was shown (28) that the sun's attraction diminished the

moon's gravity toward the earth in syzygy, as at C and D, and in-

creased it in quadrature, as at A and B. Taking both these facts

into consideration, it is man. Fig. 7.

ifest that at A and B, the

centripetal force must con-

siderably exceed the centri-

fugal, while at C and D, the

centrifugal will be the great-

est, which would cause the

moon's track to fall within the circle at the former points, as to L
and N, and without it in the latter, as to F and G.

The effect would be to Fig. 8.

throw the orbit into some-

thing such a shape as is

represented in Fig. 8, viz:

a kind of oval, with its

longest diameter, AB, at

right angles to line ES,
drawn from the earth to

the sun.

Will this alteration in the the shape of the moon's orbit affect its

longitude ? To aid us in this investigation, we will circumscribe

the oval by a circle ; and to make the illustration more striking,

we will suppose the oval very much flattened, so as nearly to coin-

cide with AB, as in Fig. 9. Now, if the arc AF be divided in any

given ratio at the point L, and LE be Fi£- 9 -

drawn, it will cut the arc AD by no means

in the same ratio. AM will bear a much

greater ratio to MD than AL to LF.

Hence, if two bodies, whose periodic

times were equal, should start from A atf|

the same time, and move with uniform

velocity, one in the circle ALF, and the

other in the oval AMD, the former would

arrive at L before the latter would at M,

leaving it behind perhaps at N. The same reasoning may be ap-

plied to the other quadrants, though with the opposite effect in DB
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and CA, when it will show that the moon must be in advance of

its mean place.

31. There are two reasons, then, why the moon will be behind

its mean place when passing from quadrature to syzygy, but in

advance of it while passing from syzygy to quadrature ; 1st, from

its unequal motion, (29,) and 2d, from the shape of its orbit. The

maximum effect of the former to change the moon's place, is from

9' 17" to 10' 15", and the latter from 23' 56" to 20' 52", according
to the distance of the earth from the sun. When at its mean dis-

tance, the maximum effects are 9' 46" for the former, and 25' 24"

for the latter, amounting to 35' 10" for both united. *

32. If the four quadrants were perfectly symmetrical, a table

showing the correction required for each degree in one quadrant,

would answer for all the rest ; only the equation would be additive

when the moon is passing from syzygy to quadrature, i. e., in

the arcs DB or CA, and subtractive when it is passing from quad-
rature to syzygy, i. e., in the arcs AD and BC. But there is a

slight difference ; for, 1st, the disturbing influence is a little less in

the half of the orbit nearest the sun than in the other half, the dif-

ference of the squares of the distance of the earth and moon from

the sun, being a trifle less ; and 2d, the quadrants (so termed for

the sake of conciseness) nearest the sun contain a little less than

90° each, and the other two quadrants, each a little more than 90°,

for AB is not strictly a straight line, but an arc of the earth's or-

bit. A table for two quadrants would, however, be sufficient—one

in the half of the orbit next to the sun, and the other in the half

most remote from it, as, for example, DB and BC. Table 12th is

constructed in this way, where it will be seen that the equations

are additive for a little less than 90° after the moon leaves D, and

then subtractive to the end of the next quadrant. If the moon's

angular distance from the sun exceeds 180°, which would carry it

into the quadrants CA or AD, the degrees are found at the right

hand and bottom of the table, and direction is given to " reverse

the signs," so that the equations which were additive in DB become

subtractive in AD, and those which were subtractive in BC become

additive in CA. •
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33. The angular distance of the moon from the sun, (found by-

subtracting the longitude of the latter from that of the former, as

thus far corrected, borrowing 360° if necessary,) shows in which

quadrant the moon is. When the difference is from 0° to 90°, or

from 180° to 270°, the moon is passing from syzygy to quadrature,
but when it is from 90° to 180°, or from 270° to 360°, the moon is

passing from quadrature to syzygy. In the present case, the lon-

gitude of the sun (17) is 64°.3494, that of the moon (25) 67°.5374,

and the excess of the latter 2°. 1880. Entering table 12th with

this argument, in the same manner as directed in article 13th, the

equation is found to be +.0445. This is to be applied to the moon's

longitude and anomaly according to its sign. If the argument had

been over 180°, the sign of the equation would have to be changed
to —. After this equation is applied, the moon's longitude becomes

67°.5819, and the anomaly 145°.012.

34. The inequality to which this chapter is devoted, being occa-

sioned by the disturbing influence of the sun, must be more or less

according as the distance of that luminary varies, as we have al-

ready observed, (31.) In table 12th, and, consequently, in the

equation that was just applied, the sun is supposed to be at its mean

distance. Hence another correction becomes necessary, which

must evidently depend on the same circumstances as the last, to-

gether with another, viz., the distance of the sun from the earth,

which is determined by its anomaly. Accordingly in table 13th

two arguments are employed ; viz., 1st, the argument just used for

variation, which is to be sought for at the top or bottom of the

table, and 2d, the sun's anomaly at the right or left. If the former

is found at the top, we look for the latter at the left; but if at the

bottom, at the right. The equation is found opposite the latter,

and in the same column with the former. Since one argument is

given only for every 5° and the other for 10°, it is necessary to

institute a kind of double proportion for the units and decimals. It

is further to be noticed, that if both arguments are to be found in

the same gnomon, enclosed by the heavy lines about the table, the

equation is to be applied with its proper sign, as found in the table ;

but if one is found in the inner and the other in the outer gnomon,
the sign before the equation is to be changed from + to —,

or
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from — to +. In the present case, the former argument (33) is

2°.1880, which being between 0° and 5°, is to be considered as

found in the inner gnomon at the top; and the latter (11) is

143°.797, which is found in the outer gnomon, at the left. Making
a proper allowance for the units and decimals, the equation is

+.0053 ; but the arguments being found, one in the inner and the

other in the outer gnomon, the sign must be changed, and the equa-

tion becomes —.0053. This applied to the moon's longitude and

anomaly, found in the last article, makes the former C7°.57G6, and

the latter 145°.007.

CHAPTER VI.

PERTURBATIONS IN THE MOON's MOTION, CONTINUED. EVECTION.

35. The inequality which is to occupy our attention in this chap-
ter was discovered by Ptolemy, A. D. 110, and is denominated

Evection.

For distinctness of conception, it is necessary to bear in mind

the precise difference between this correction and that treated of

in the last chapter, for there is danger of confounding them, since

both are caused by the disturbing force of the sun in the plane of

the ecliptic. That supposed the original form of the moon's orbit

a circle, this an elipse, and wholly dependent on its eccentricity ;

so that if the elipse had no eccentricity, there would be no correc-

tion for evection. That always elongated the orbit in the direction

of the quadratures ; this, we shall see, elongates it in the direction

of the syzygyes. That regarded the shape of the orbit as constant ;

this, as ever changing. An important element in this correction

is the irregular motion of the line of apsides ; that had no such line

to take into account.

36. It will be shown, that the progressive linjjpf
the moon's ap-

sides is quite irregular ; that it sometimes progreSes more and some-

*



times less rapidly ; sometimes remains stationary, and sometimes

even goes backward. Now in determining the moon's mean ano-

maly, (11,) all the motions were supposed uniform, and no correc-

tion has been made for any irregularity in the motion of the moon's

perigee, except that which resulted from the unequal distance of

the sun, (13.) But since the anomaly is reckoned from the peri-

gee, it must be subject to all the irregularities that the perigee itself

is. Hence, in applying the equation of the centre, (17,) we used

data that were erroneous, and the error that was introduced needs

to be corrected.

27. But this is not all. The greater the eccentricity of an orbit

is, the greater is the equation of the centre. Thus the equation of

the moon's centre is much greater than that of the sun with the

same anomaly, (compare tables 8th and 9th.) because the orbit of

the former is much the most eccentric. Now it will be shown

presently, that the eccentricity of the moon's orbit is ever varying,

and the equation of the centre, which depends upon it, must vary
likewise ; whereas table 9th is computed on the supposition of a

constant mean eccentricity. So that we not only made use of a

wrong anomaly in applying the equation of the centre, but also a

wrong eccentricity in the moon's orbit. The correction for the

combined effect of these two errors constitutes evection.

38. It will be demonstrated in its proper place, that if a revolving

body be retained in an eliptical orbit, by a force directed toward one

of the foci, the square of the distance of the body from that focus,

at any point in its orbit, must always be inversely proportioned to

the intensity of the attractive force at that point. Hence, if an in-

increase or diminution of attraction were to take place throughout

the orbit, proportional to the existing attractions at each point,

the size, but not the form of the orbit would be changed. The ec-

centricity would remain the same as before. But if the alteration

in the attractive force were in any other ratio, it obviously would

affect the shape of the orbit. If the perigeal gravity was made to

bear too great a ratio to the apogeal, it would be drawn in too

much at the former point, or too little at the latter, and the orbit

would become
rrqgfc

eccentric. Or if the apogeal gravity became
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too great in proportion to the perigeal, the orbit would be rendered

less eccentric, or more nearly circular.

39. To apply this to our subject, let E (Fig. 10) represent the

earth, ADBC the moon's orbit, A being the perigee and B the apo-

gee, and FGHI the sun's apparent orbit. First, let the sun be at S,

so that the line of apsides, AB, of the moon's orbit is directed to-

Fg. 10.

wards it, or lies in syzygy. The moon is more attracted by the

earth at A than it is at B, in the inverse ratio of AE2 to EB* ; and

in order that the disturbing influence of the sun, which tends (28)

to diminish the earth's attraction at these points, should effect no

change in the shape of the moon's orbit, it must also (38) be more

at A than at B, in the same ratio. But instead of that, the sun's

disturbing influence is greater at B than tit A, for the difference

between SE2 and SB2
is greater than between SA2 and SE2

; con-

sequently the relative difference in the attractive forces at A and

B toward E is increased, and the orbit must become more eccen-
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trie. In the same manner it may be shown that the eccentricity
of the moon's orbit must be increased when the sun is at S".

But if the sun were at S', and the moon at A or B, the latter

would be drawn toward the earth by the sun's disturbing influence,

and its gravity increased, (28 ;)
but more at B than A in the ratio

of EB to EA, as will appear if we resolve the force in the direction

S'A into two others in the directions AE and ES', and that in the

direction S'B into two in the directions BE and ES'. In this case

the greatest addition is made to the least force, whereas to preserve
the shape of the orbit unchanged, the additional gravities should

be in proportion to the previously existing ones. The apogeai

gravity thus becomes too great in proportion to the perigeal, and

the eccentricity of the orbit is diminished, (38.) We shall arrive

at the same conclusion if the sun be supposed to be at S'".

Thus the eccentricity of the moon's orbit is greatest when the

line of its ipsides lies in syzygy, and least when it lies in quadrature.

It is plain that these changes in eccentricity occur, not instantane-

ously, but gradually, as the sun progresses in its orbit. The ec-

centricity must diminish while the sun is passing from S to S', or

from S" to S'", and increase while it is passing from S' to S", or

from S'" to S, being at its mean state when the sun is about half

way between these points, as at L, M, N and K. The eccentricity

must exceed the mean when it is in the quadrants KL, or MN, and

be less than the mean when it is in the quadrants LM and NK.

40. The investigation of the irregular motion of the line of the

apsides of the moon's orbit, on which the evection in part depends,

is considerably more difficult than any of the preceding, and will

require the reader's close attention. That it must, on the whole,

progress, will appear, when we consider that the average effect of

the sun's attraction is to draw the moon away from the earth, and

thus to render its orbit less curved than it would otherwise be.

Consequently, after the moon leaves its perigee, or apogee, where

its motion is at right angles with the radius vector, its angular mo-

tion round the earth must amount to more than 180° before its

path will have been deflected enough to intersect the radius vector

at right angles again. That is, it must be more than 180° from
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perigee to apogee, or from apogee to perigee.* And, further ;

since the attraction of the sun sometimes increases, and sometimes

diminishes the moon's gravity toward the earth, we should con-

clude the line of its apsides must sometimes regress and sometimes

progress. We must, however, go into a more minute investiga-

tion of this motion, to account for all the phenomena to which it

gives rise.f

41. If the moon, or any other body revolving in an eliptical orbit,

should be deflected from its natural course at any point by some dis-

turbing influence, so as to move at right angles to the radius vector,

the point where such deflection occurred would thenceforward become

one of the
'

apsides of the orbit, provided it were not further dis-

turbed.

This is evident, from the fact that the apsides are the only points

in an eliptical orbit, where the curve is at right angles to the radi-

us vector. Also the body must still revolve in an elipse, or some

other conic section, for we shall demonstrate hereafter that simple

gravitation toward a fixed point can retain it in no other curve.

Whether the point of deflection will be the perigee or the apogee,
will depend on the velocity of the time

;
if it be greater than the

mean, the point will be the perigee, but if less, the apogee.

42. To apply this principle, let us inquire what alteration must

be made in the attractive force of the earth, E, (Fig. 11.) to bring
the motion of the moon at right angles to the radius vector at the

points of its orbit C, D, F, and G, the two former being near the

perigee, A, where the velocity exceeds the mean, and the two lat-

ter near apogee, B, where it is less. While the moon is moving
from A, through S to B, the direction of its motion constantly makes

an obtuse angle with the radius vector, (as EFM ;)
it would be

*
Playfair.

t The articles between this and the 56th may be omitted, if the instructer should deem
it expedient.
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Fig. 11.necessary, therefore, at the

point F, that the attractive

force of E should be in-

creased, to curve its mo-

tion to K, and thus bring
it at right angles with EF.

And, if it were so increas-

ed, the point F would (44)

henceforth become the ap-

ogee, instead of B. In

other words, the apogee
would have moved back-

ward from B to F ; and consequently the perigee from A to T,

for they must always be opposite each other.

The same reasoning will apply to the point D ; yet, if the deflect-

ing force should occur there, D would become the perigee instead

of the apogee, on account of the moon's greater velocity at that

point, (44,) and the apogee would be found in the direction of the

line DO ; so that the apsides would have moved forward from A
to D, and from B to O. In the other half of the moon's orbit,

where the direction of the motion continually makes an acute angle

(as EGR) with the radius vector EG or EC, it is manifest, that

the attraction of E must be diminished, in order to bring the mo-

tion at right angles, as GL and CH ; or, rather, a repulsive force

must be given to it. Such a deflection occurring at G, would

change the place of the apogee from B to G, or, would make it

move forward. If occurring at C, it would change the place of

perigee from A to C, or, would make it move backward.

43. If instead of increasing the gravity at F, it were diminished,

it is pretty clear that the apogee would move forward instead of

backward. To illustrate it, let us suppose the gravity to be great-

ly diminished, so much so as to be nearly destroyed. The moon,

being scarcely attracted at all toward E, will fly off nearly in a

tangent to the elipse at F, and the apogee will be found in that

direction, but infinitely distant. If then, we draw NP parallel to

the tangent FM, it will point to the place of the apogee, which has,

therefore, moved forward, equivalent to the arc from B to V. If

the attraction were less diminished, it would not move forward so

far, but the reasoning would hold good.
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Similar reasoning applied to the points D, C, and G, will show

that, by reversing the supposed alteration in the force of gravity

at those points, we shall reverse also the motion of the line of the

apsides.

Summing up our conclusions, we find that an increase of the

moon's natural gravity toward the earth, near apogee, on either

side, would cause the line of apsides to regress ; while a diminution

would cause it to progress ; and that the reverse takes place by an

alteration in the natural force of gravity when the moon is near its

perigee. I employ the terms natural gravity, and natural velocity,

to signify the gravity and velocity that the moon would have if it

revolved regularly in its eliptic orbit, undisturbed by the attraction

of any foreign body.

44. It is evident that an increase in the moon's velocity, and

consequently of its centrifugal force, must have nearly the same

effect as a diminution of the earth's attraction ; and vice versa.

Hence, if its velocity near apogee is, from any cause, rendered

greater than its natural velocity in that part of its orbit, the line of

apsides must move forward, or progress ; and the reverse, if such

an increase of velocity occurs near perigee. If both these causes

conspire, (and we will proceed to show that they do,) the progress
or regress of the apsides must be still more rapid.

45. It has been shown, (28,) that the sun's disturbing influence

increased the moon's gravity toward the earth in quadrature, but

diminished it in syzygy ; and we should suppose that there must

be intervening points, where it exerted no influence either way.
These points it is important for us to find, for when the moon is

at these, the apsides of its orbit must be at rest, so far as their mo-

tion is caused by a variation in gravity.

46. Let the moon be at any point M (Fig. 12) of its orbit, and

let the sun's attraction on it at that point be represented by m.

Resolving this force into two others in the directions ME and ES,

the proportion for the former (called the addititious force, because

it increases the moon's gravity toward the earth) will read SM :

ME ::m: the addititiousforce =gMm= slfcfME
m -

3



47. The proportion for the latter force, in the direction ES, will

read SM : ES : : ?n : the force required =g^-?w. But the earth is at-

tracted by the sun in the same direction, ES, and it is the differ-

ence of the attractions only that exerts any disturbing influence on

the moon in this direction. We will therefore find how much the

attraction of the sun on

the earth is, and subtract

it from that just found,

viz.,
— m. By the laws

of gravity ES2
: SM2

: :

m : the sun's attraction at

the distance ES. Hence

the earth is attracted

with a force equal to

^m, which is to be sub-

tracted from ^77i. Re-

ducing the fractions to a

common denominator,

and subtracting, we have

Now SM=
very nearly;

ES3—SM3

-m.ES3+SM
ES—EF,
therefore, by involving

both sides, and rejecting

the 3d and 4th terms in

the right hand member
on account of their small-

ness, we have SM3 =
ES3—3ES2 xEF. Sub-

stituting this value in the

place of SM3
' the above

fraction, which expresses

the disturbing influence

of the sun in the direction

ES, becomes *™l$mm=
fgm. Resolving this

force into two others,

one in the direction EM,
and the other at right

angtes to it ; i. e., in the

directions EG and SG, the proportion for the former (called the

ablatitious force, because it diminishes the moon's gravity toward



the earth) will read SE : EG, or (since the triangles EGS and EFM
are similar) ME : EF : : ^m : the ablatitiousforce=^~^m.

48. The addititious and ablatitious forces acting in direct oppo-

sition, must neutralize each other at the points in the orbit where

they are equal, showing that, at such points, the sun's attraction

produces no effect on the gravity of the moon toward the e«th.

In that part of the orbit that lies between these points and quadra-

ture,.there wilL.be an increase of gravity, and between those points

and syzygy, at Cor D, (for the demonstration will apply to. either

half of the orbit ACB or ADB,) a diminution.

49. But since the fractions representing these forces have a com-

mon denominator, they will evidently be equal when their numera-

tors are equal, i. e., when 3EP=ME2
; or (extracting the square

root) when v/3xEF=ME; or (converting the equation into a

proportion) when ME : EF : :V3 : 1. But ME : EF : : 1 : cos.

MES ; therefore, by equality of ratios, v/3 : 1 : : 1 : cos. MES=
.5773672, which is the cosine of 54° 43' 56". Hence the gravity
of the moon toward the earth is diminished when it is within 54°

43' 56" of syzygy, and increased when it is within 35° 16' 4" -of

quadrature.

50. It is worthy of notice here, that the diminution of gravity in

syzygy is about double the increase in quadrature. The above

reasoning shows, that the ablatitious force is to the addititious as

3EF2
: ME2- But in syzygy EF=ME, and 3EF=3ME2

; so that

the difference between them is 2ME2
; while, in quadrature, EF

becomes 0, and the ablatitious force disappears, leaving the additi-

tious force proportional to ME2, which is half of 2ME2

51. There remains, not yet investigated, the tangential force in

the direction GS, or MH, one of the parts into which we resolved

(47) that in the direction ES. Its precise amount it is not now ma-

terial for us to know : but it is to be observed, that its only influ-

ence is to retard the moon's motion from D to B
; since, being at

right angles to EM, it neither increases nor diminishes the moon's

gravity toward the earth. If the moon was supposed to be in any
of the other quadrants, and

figures
constructed on the same princi-

ple as this, we should see that the moon must be retarded in pass-
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ing from D to B, and from C to A ; but accelerated from A to D,
and from B to C. Hence its motion must be swiftest in syzygy at

C and D, slowest in quadrature at A and B, and a mean half way
between syzygy and quadrature. This is the same conclusion to

which we arrived by a less rigid process, in article 29th.

5% To show how the motion of the line of apsides is affected by
this perturbation in the moon's gravity and velocity, let us recur

again to Fig. 10th. Let the sun be at S, or S", so that the line of

apsides, AB, lies in syzygy. In this case, both the moon's velocity

in its orbit will be increased, and its gravity towards the earth di-

minished (48) at A and B. Consequently, (43 and 44,) the line of

apsides must move forward when the moon is near apogee, at B ;

but backward, when it is near perigee, at A ; and if the regress

near perigee is equal to the progress near apogee, they will balance

each other, so as, on the whole, to produce no change in the posi-

tion of the line of apsides. But they are not equal, for several rea-

sons.

1st. The diminution of the moon's gravity at these points, and

the increase of velocity, are both caused by the force in the direc-

tion ES, (Fig. 12,) which was obtained in article 47, by taking the

the difference of the attractions of the sun upon the earth and

moon, in that direction. Consequently, they must depend on the

difference between the distances of the moon and earth from the

sun ; and this difference is greater when the moon is in apogee, than

when it is in perigee.

2d. The forces causing the line of apsides to progress, act for a

longer time than those causing it to regress, because the moon is

longer in describing the apogeal than the perigeal half of its orbit.

3d. A given force would produce more effect on the moon when

it is in apogee than when it is in perigee, on account of its natural

velocity being less at the former point, and therefore more easily

deflected from its orbit. If a cannon ball were moving but one

foot in a second, it would not be very difficult to turn it out of its

course, but not so if it were moving 1000 feet per second.

From all these circumstances combined, the line of apsides pro-

gresses quite rapidly when the sun is at S, or S". And, since the

same causes operate in the same way, one (51) while the sun is

passing through the arcs KL and MN, extending 45° each way
from S and S", the direction of the line of apsides of the moon's
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orbit, and the other (49) through FG and HI, extending 54° 43' 56"

from the same points, it follows that the line of apsides must pro-

gress, at least, while the sun is in the quadrants KL and MN.

53. When the sun is in either of the small arcs FK, LG, HM or

NI, containing 9° 43' 56" each, the line of apsides is nearly station-

ary : for the perturbations, both in gravity and velocity, being

near their limits are very weak, and what small force they do ex-

ert is in opposition to each other, the former tending to make the

apsides progress, and the latter, regress.

54. Now let us suppose the sun at S' or S'", so that the line of

apsides shall be at right angles to ES', or shall be in quadrature.

The moon's gravity toward the earth, when at A and B, will now
be increased, (48,) and its velocity diminished, (51.) Consequently,

(43 and 44,) the line of apsides must progress when the moon is

near perigee, but regress when it is near apogee. And, by nearly

the same reasoning as employed above, (52,) it may be shown, that

the regress exceeds the progress ; so that, on the whole, the line

of apsides regresses. In like manner, it may be shown, that it re-

gresses, though less rapidly, when the sun is any where in the arcs

IF or GH.

55. The regress here will, however, be less rapid than the pro-

gress when the sun is in the arcs KL and MN, for the perturba-

tion in the moon's gravity is (50) but half as great. It will also

be of shorter duration, for the arcs IF and GH contain but 70° 32'

8" each, and the sun moving forward in its orbit about 1° per day,

while the line of apsides moves backward, on an average, about

1-6 of a degree per day, each arc will be passed over in about 61

days; when 1 he line will become nearly stationary for about 10

days, (the time occupied in passing one of the small arcs, as FK,)
and then begin to advance.*

* It may seem to the reader erronious, to ascribe any part of the progress of the moon's

apsides to the perturbation in velocity ; for, since that is equal in quadrature and syzygy,
and extends the same distance, 45°, from each, it would seem that, so far as this cause

is concerned, the regress, when the apsides are near quadrature, should be just equal to

the progress when they are near syzygy. Sir Isaac Newton took this view of the subject,

and was greatly perplexed at finding that he could account for but about half the motion

of the line of the apsides. The explanation here given, is, in substance, that of Clairaut,

who showed that, when the apsides regressed, they approached to meet the sun, thus

shortening the regressive arc, and, consequently, diminishing the perturbation in velocity;

but, when they progressed, they receded from the sun, lengthening the progressive arc,

and thereby increasing the perturbation in velocity. So that the perturbation would not

only be greater in the latter case than in the former, but extend through a greater arc.
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Since the line of apsides remains nearly stationary about 40

days in the year, moves backward about 122, and forward during

the remainder, amounting to about 203 days ;
and since its forward

motion is more rapid than its backward, it is evident that, in the

'course of a year, it must, on the whole, advance. The rate of ad-

vance is found by observation, to be such as to carry it entirely

round the orbit in 3232 days, IS hours, |P minutes, and 29.4 se-

conds, or about nine years.

The foregoing explanations have, I trust, made the theory of the

variation in the eccentricity of the moon's orbit, and the irregular

motion of the line of its apsides tolerably clear to the reader. It

remains to make a practical application of it.

56. We have seen (39, 52 and 54) that the eccentricity of the

moon's orbit exceeds the mean, when the sun is in those quadrants

where it causes the line of the moon's apsides to advance, and is

less than the mean when the sun is in the other parts of its orbit :

also, that these changes occurred alternately, and nearly in alter-

nate quadrants, the lines of division being not far from half way
between syzygy and quadrature. We will eneavour to represent

these changes by a figure, the construction of which was devised

by Sir Isaac Newton for the purpose, and which observation shows

to be very nearly correct.

Let AaBb (Fig. 13) represent the moon's eliptical orbit, in its

mean state, M the moon, E the earth, placed in one of the foci, and

EC the mean eccentricity. Now, as the eccentricity varies, the

centre C will sometimes approach toward E, as far as K, and

sometimes recede from it to I ; the distances CK and CI being the

greatest variation of the eccentricity from the mean. Describe

the circle IDKH, and join MC and ME. Let ES represent the

direction of the sun, and B the moon's mean perigee, i.e., the place

of the perigee if it progressed uniformly. Now, since it has been

shown (39) that when ES is at right angles to AB, the eccentricity

is least, and when it coincides with it, the greatest, it is plain that

it must be represented by EK in the former case, and EI in the

latter. And when ES is in any other position, the eccentricity

must be represented by a line longer than EK, and shorter than

EI. We shall effect this for every possible position of ES, by al-

ways making the angular distance of H from I, in the direction

IDKH, equal to twice the angle BES, The length of EH will be
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equal to the eccentricity at the time, very nearly. For example,
when BES=45°, H will coincide with D, making EH very little

longer than EC, and thus showing that the eccentricity exceeds

the mean in the same small ratio. Again, if BES=90°, H would

coincide with K, showing that the eccentricity was now a mini-

mum, which agrees with what we have already seen to be true.

In the same manner it may be shown, that at any other point, this

construction brings out very nearly the result it should do accord-

ing to our previous reasoning.

Fig. 13.

Not only will the length of EH represent the eccentricity of the

moon's orbit at all times, but its position will represent that of the

line of apsides very nearly, never varying from it more than 3'.

Hence, the point H may always be considered as the centre of the

eclipse ; thus changing the whole eclipse from the mean position

AaBb, to that represented by the dotted curve WXYZ.

57. It was remarked, (17.) that if two lines were drawn from the

mean place of the moon, one to the centre of the elipse, and the

other to the focus, round which it revolved, the angle at the moon,
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contained by these lines, would be equal to half the equation of the

centre, very nearly. If the eccentricity and position of the elipse

remained unchanged, the angle in question would be EMC ; but

when, in consequence of the change, H becomes the centre of the

elipse, the angle becomes EMH. Therefore HMC, which is the

difference between these two angles, must be half the effect of the

disturbing force of the sun ; or, in other words, it is half the evec-

tion we have been so long in quest of. Hence, if we can find out

a method of determining the size of this angle, or the conditions on

which its size depends, our task is over, for by doubling it we shall

have the correction required.

58. Draw Hs at right angles to MC. Then, since small angles
are nearly proportional to their sines, the line H? must always be

nearly proportional to the angle HMS, and consequently to the

evection. But Hs is also the sine of HCs, or its supplement HCR ;

therefore the evection is always proportional to the sine of HCR.
This angle we will proceed to find. The angle SEB=MEB—
MES ; therefore the angular distance of H from I, in the direction

IDK, (being, by construction, double of SEB,) =2MEB—2MES.
The angles MEB and MCB are nearly equal,* the eccentricity of

the orbit being small ; therefore, subtracting MCB, or its equal

ICR, from the first member of our equation, and MEB from the

last, we have HCR=MEB—2MES. Now MEB is the moon's

mean anomaly, and MES is the angular distance between the sun

and moon, or the excess of the mean longitude of the moon over

the true longitude of the sun. Hence the evection, which has

been shown to be proportional to the sine of HCR, is proportional

to the sine of the moon's mean anomaly diminished by twice the

excess of its mean longitude over the true longitude of the sun.f

* There is danger that the proportions of the different lines, as they appear in the figure,

may mislead the reader, and it is well to remember, that EC is but about 1-20, and KC
about 1-100 of CB.

t In this demonstration, the moon's longitude is supposed to exceed that of the sun.

But we shall arrive at the same conclusion if we suppose the sun's longitude the greatest ;

as, for example, if it be in the direction ES'. For, now, S'EB=MEB-fMES' ; and,

consequently, by the same construction and reasoning as in the other case, HCR=MEB
-f-2MES\ But the result is obviously the same, whether we add the angle MES', or

subtract its supplement ;
that is, the angular distance of M from S', reckoned in the other

direction, S'AaBM. Now, this supplementary distance is the excess of the moon's lon-

gitude over that of the sun, borrowing 360°, or one revolution
; therefore, the angle HCR

is still equal to the moon's mean anomaly, diminished by twice the excess of its mean

longitude over the true longitude of the sun ;
and the principle becomes general in its

application.
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If the reader will now turn to table 14th, he will notice that this is

the argument by which the evection is taken out in that table.

59. At the time of our predicted eclipse, the quantities are as

follows :
—

The moon's mean anomaly is, (13,)
- - 145°.0780*

The moon's mean longitude is, (11,) 64°.2329

Subtract sun's corrected longitude, (17,) 65 .3494

358 .8835x2=357 .7070

Argument of evection, 147.3110

60. Entering table 14th with this number as an argument, in the

same manner as heretofore, the required correction is found to be

.7156, which the sign
—

, placed at the head of the left hand col-

umn, in which the argument is in this case found, shows to be

subtractive. It is plain also, from the figure, that it should be sub-

tractive; for, in adding the equation of the centre, (17,) we added

twice the whole angle EMC, which was too much by twice the

angle HMC. We now correct the error, by subtracting the equa-

tion just found from the longitude and anomaly previously obtained,

(34,) which leaves for the former 66°.8610, and for the latter,

144°.291.

61. All the remarks that were made in article 34 on the subject

of variation, will apply also to evection, since both are caused by
the sun's disturbing influence. The method of taking the requisite

correction from the table (table 15) is also the same, only that in

this case, the argument for evection, viz., the moon's mean anomaly
diminished by twice the excess of the moon's longitude over that

of the sun, is to be sought for at the top or bottom of the table, in-

stead of the argument for variation.

The correction, as found in the table, is —.0100, but since one

argument is found in the inner gnomon, at the bottom, and the

other in the outer one, at the right, the sign is to be changed, (34,)

and the correction becomes -f .0100, which, added to the longitude
and anomaly last found, makes them respectively 67°.8710, and

144°.301.

* This is the moon's mean anomaly, corrected by the annual equation of its perigee,
which it is proper to do, because that inequality affects only the average progressive mo-
tion of the perigee at different seasons of the year, and is in no way connected with that

which we are now considering, or any other which has reference to the position of the

moon in its orbit
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CHAPTER VIL

NODAL EQUATION OF THE MOON's LONGITUDE, AND REDUCTION TO THE

ECLIPTIC.

62. In the numerous corrections that we have had occasion to

apply to the moon's longitude and anomaly, growing out of the dis-

turbing influence of the sun, the orbits of both have been supposed
to lie in the same plane ; or the latter to lie in the plane of the or-

bit of the former. The first of these suppositions is never true,

and the latter only twice in a year ; viz., when the sun passes the

moon's nodes. At all other times, it is either on one side of the

plane of the moon's orbit or the other. Now it is evident that the

sun's disturbing influence, in the various ways we have been speak-

ing of, must be less than if it lay in the plane of the moon's orbit ;

for* in order to make our reasoning good, its attraction must be

resolved into two forces, one lying in the plane of the orbit, and

the other at right angles to it, which necessarily creates a loss- of

force. If it were always at a fixed mean distance from the plane,

a proper allowance might be made in computing the inequalities,

and the work would thus be accurate without further correction.

In fact, the quantities in the tables which we have been using, were

calculated on that supposition. But since the distance is variable,

additional corrections are necessary for all that we have applied

in the three preceding chapters. We will select, as an example,
the annual equation of the moon's longitude, discussed in chapter

4th, remarking, as we pass, that if we were to attempt to apply all

the corrections resulting from causes like that under consideration,

and from the effect of one correction in altering the argument from

which others had been obtained, our task would be endless. The

business is, at best, only a series of approximations.

63. When the sun is passing one of the moon's nodes, being in

the plane of the orbit, its attractive force exceeds the mean, so far

as the circumstance now under consideration is concerned, dilating

the moon's orbit (19) and increasing the periodic time more than

usual. The moon must therefore fall behind its mean place, and

continue to do so more and more, till the sun reaches its point of

mean distance, about 45° from the node. As the sun continues to

recede from the plane of the moon's orbit, its disturbing influence
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must grow less* allowing the moon to contract its orbit and shorten

its periodic time, till finally, when the former is 90°* from the node,

the latter will have gained up what it had lost, so that its mean and

true place will again coincide.

The reverse of all this will take place when the sun is in the

next quadrant. Its disturbing influence being a minimum at the

outset, the moon must get ahead of its mean place ; and -it wtfl not

lose what it thus gains till the sun reaches the next node. Hence,

if the sun's longitude exceeds that of one of the moon's nodes by-

less than 90°, something must be subtracted from the longitude and

anomaly, as already obtained ; but added, if the excess is greater

than 90°. Or, reckoning from the ascending node, a subtractive

equation must be applied in the 1st and 3d quadrants, and an addi-

tive one in the 2d and 4th. Such an equation is termed the Nodal

Equation of the moon's longitude.*

64. To find how far the sun is from the node, the longitude of

the latter (13) must be subtracted from that of the former, (17.)

Entering table 16th with the argument thus found, viz., 4°.3486, in

the same manner as we did table 6th and others, we find the equa-

tion to be .0026, which the sign
— at the head of the column con-

taining the argument, as well as our previous reasoning, shows

must be subtractive. The resulting longitude of the moon becomes

66°.8684, and the anomaly 144°.298. ,

65. The moon's anomaly is now altered considerably, by reason

of the various equations that have been applied to it, from what it

was when we used it to take out the equation of the centre, in arti-

cle 17th ; and since this equation is a very important one, our work

will be more accurate if we now take it out again, and by what-

ever amount it differs from what it was as first taken out, correct

the moon's longitude. The anomaly, as used in article 17th, was

145°.078, which gave as an equation +3°.4154, while now it is

but 144°.298, which gives for the equation -f-3°.4834, so that we
did not add enough to the moon's longitade by 0°.0680. Adding
this now, we have 66°.0364, which may be regarded as the true

longitude of the moon, reckoned on its orbit, or, as it is usually

termed, the true Orbit Longitude.

* I find no name for this equation in any treatise on astronomy that I have met with,
and have given it one that seems to be indicative of its character.
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66. The plane of the lunar orbit being inclined to that of the

ecliptic, causes longitudes reckoned on it to be different from what

they would be if reckoned on the ecliptic. And since the longitudes
of the heavenly bodies are referred to the latter, the orbit longitude

just found needs one more correction to reduce it to the ecliptic. The

argument, found by subtracting the longitude of the moon's node
from that of the moon itself, is 5°.9356, and the corresponding

equation, obtained from table 17th, is —.0233. This applied,

leaves 66°.9131 for the moon's true longitude from the mean vernal

equinox.

CHAPTER VIII.

LUNAR, OR MENSTRUAL EQUATION OF THE SUn's LONGITUDE AND NUTA-

TION.

67. It was observed in article 2d, that any motion or change of

motion in the earth, produced apparently a precisely similar one

in the sun. Now, the earth, like the moon, revolves round the

common centre of gravity of the two, and is, therefore, subject to

inequalities in this motion, the same in kind as those we have been

considering in that of the moon, though far less in degree, owing
to the earth's greater weight, and consequently close proximity to

the centre of gravity. These inequalities, small in themselves, are

rendered vastly smaller in their effect upon the sun's apparent mo-

tion, by reason of the great distance of the latter.

Fig. 14.

Let S (Fig. 14) represent the sun, ABF the earth, E its centre,

M the moon, and C the common centre of gravity between the

earth and moon, about which both revolve. The distance from E
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to C is not far from 2970 miles, or about three-fourths of the earth's

radius.

It is manifest that the longitude of the sun, as seen from E, will

differ from its longitude as seen from C, by the angle CSE. When
the angle MES is either 0° or 180°, the angle CSE will disappear,

and when it is of any other size, the latter angle can be calculated ;

for, in the triangle CES, the two sides, CS and CE, and the angle

CES are known. We assume here, that E revolves in a circle

round C, keeping CE of uniform length. It is plain from the dia-

gram, that if the longitude of the moon exceeds that of the sun, the

latter will be increased by the angle CSE ; but the contrary, if

the longitude of the sun is greatest. In other words, if the longi-

tude of the moon, diminished by that of the sun, is less than 180°,

the equation will be additive, but if greater, subtractive.

»

68. The longitude of the sun, as found in chapter 3d, is 65°.3494,

and that of the moon, as finally corrected, (67,) 66°.9131. The
excess of the latter above the former is 1°.5637. Entering table

18th with this number, in the usual way, we find that, in the pres-

ent case, the correction is inappreciable, unless we extend our de-

cimals further ; so that the longitude obtained in chapter 3d is to

be considered correct.

69. The error occasioned by regarding the orbit of the earth's

centre as a circle instead x>f an elipse, as it in fact is, might be cor-

rected by introducing an equation corresponding to the equation of

the centre of the sun or moon. But it would never be necessary,
unless extreme accuracy were required ; for the whole correction

which we just undertook to apply, when a maximum, is but the

decimals of a degree, .0021 ; and since the eccentricity of the or-

bit amounts to hardly more than 1-20 of the radius, the error can

never be more than about .0001, which is less than half a second.

Much less then must the inequalities in the motion be appreciable.
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CHAPTER IX.

NUTATION IN LONGITUDE.

.70. The equinoxes are not stationary, but move slowly, west-

ward, which necessarily affects the longitudes of all the heavenly

bodies, since they are reckoned from the vernal 'equinox. If the

rate of motion were uniform, the longitudes of the sun, moon, and

moon's nodes, which we have obtained in the preceding chapters,

would nevertheless be correct ; for the tables from which we ob-

tained the mean longitudes in article 11th, are based upon the sup-

position of a uniform rate of precession of the equinoxes, and allow-

ance is consequently made for it. But it is not uniform, and we
are now to look into the causes of the inequality, and make the

requisite correction in the longitudes on account of it.

71. If. a body were to revolve round the earth, in an orbit not

coinciding with the ecliptic, so that it would be sometimes.north and

sometimes south ofthe plane ofthe latter, we can see that whenever it

were thus situated, the sun's attraction must tend to draw it back into

the aforesaid plane. To illustrate by a diagram, let SD (Fig. 1 5) rep-

resent the plane of the ecliptic, and MM' that of the revolving

body, both seen edgewise,* S the sun, and E the earth. Fig. 15.

When the body is at M the sun's attration on it, in the di-

rection SM, may be resolved into t^o other forces, in the

directions SC and CM, the latter of which tends to draw

the body directly into the plane SD. In like manner, when
the body is at M', it is drawn toward the plane SD, by a

force represented by M'D ; and so of any other point out

of the plane of the ecliptic. The consequence is, that the«

body, as it revolves round its orbit, which we will suppose
it to do in an easterly direction, is drawn into the plane of

the ecliptic, and made to cross it sooner, that is, farther

westward, every succeeding revolution.* The same would

be true of any number of bodies similarly situated, so that

our reasoning will be good, even if they were multiplied to such a

* The reader will perceive, that the condition of our supposed body corresponds, in

every respect, with that of the moon revolving round the earth, and hence will see the
cause of the retrograde motion of the moon's nodes.
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degree as to form a continuous ring entirely round the orbit. Nor

will it alter the principle, if we suppose the bodies, or ring, very

near to the earth, or even attached to it, only that, in < the latter

case, they would communicate their * motion to the earth, and so

could not move without dragging the earth with them, which

would greatly deaden any motion, or .change of motion they would

otherwise have.

Now, from the spheroidal form of the earth, there is a protruber-

ant mass of matter about eighteen miles thick girdling its equator,

every particle of which is situated precisely as we supposed our

imaginary bodies or ring to be. The effect we have described

must therefore follow, and every place
—as Quito, for example—

must every day, by the diurnal motion of the earth, cross the eclip-

tic at a point farther west than on the day previous. Or,, to illus-

trate farther ; suppose the plane of the ecliptic to be a vast sheet

of some material substance, with an orifice of sufficient size to ad-

mit the earth, and to allow it to revolve freely on its axis. Now,
if a man were stationed on Mount Chimborazo, (which we will

suppose to be on the equator, though it is not precisely so,) and

every time the earth rolled round, so as to carry him under the

plane, which would be every twelve hours, should mark on the

edge the place under which he passed it, these marks would be

continually farther and farther west by about fifteen feet.

72. The attraction of the moon also conspires with that of the

sun in causing a precession of the equinoxes ; for the plane of its

orbit being much more nearly coincident with the ecliptic than that

of the equator is, it may be regarded as another body lying in the

plane of the ecliptic, and conspiring with the sun in its influence

upon the earth.

73. It is evident from Fig. 15th, that the greater the inclination

of the planes SD and MM', the greater must be the forces repre-

sented by CM and DM', and consequently the more rapid must be

the retrograde motion of the points of intersection. So far, there-

fore, as the moon's influence is concerned, the greater the obliquity

of its orbit to the equator, the more rapid must be the precession
of the equinoxes.
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Let CD (Fig. 16) represent
a portion of the ecliptic, seen

edgewise, V the vernal equi-

nox, and EF and GH portions

of the moon's orbit, making an ^_

angle ofabout 5° with the eclip-

tic ; GH representing it when
the ascending node is at V, and

EF when the ascending node

is there. Also, let AB represent a portion of the equator, making
an angle of about 23*° with the ecliptic. Then HVB, the inclina-

tion of the moon's orbit to the equator, when the ascending node is

at V, equals about 28|° ; and FVB, the inclination when the as-

cending node is there, equals about 18£°.

74. When, therefore, the ascending node, in its retrograde course,

passes the vernal equinox, which it does once in about nineteen

years, the rate of precession must considerably exceed the mean,
and the equinoxes must immediately get too far west, which would

increase the longitude af all the heavenly bodies. The same would

be true all the while that the node was slowly working its way
backward round to the autumnal equinox ; for though the rate of

precession would continually diminish, and become a mean when
the node was 90° back, or west of the vernal equinox, yet it would

take the whole of the next quadrant for it to lose what it had gain-

ed in the first. Thus, when the ascending node gets round to the

autumnal equinox, which would bring the descending node to the

vernal, all the longitudes would become right, or in their mean

state again. But the rate of precession is now a minimum, and on

principles similar to those we have been discussing, it is apparent,

that, while the node is passing through the other half of its orbit,

the longitude of all the heavenly bodies must be less than the mean.

Thus, for a period of about nine and a half years, all longitudes are

greater than the mean, and then, for the same period, less ; and so

on, alternately. This is called Lunar Nutation in Longitude.

75. It is plain, that when the ascending node is passing from the

vernal back to the autumnal equinox, its longitude must exceed

180°, and be less than 180° when it is in the other half of its orbit;

so that we can know by the longitude of the node, whether to add

to or subtract from our mean longitudes.
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76. At the time for which we are calculating, the mean longi-

tude of the ascending node (11) is 61°0883 ; and entering table

19th with this argument, we find the amount to be subtracted from

the longitudes of all the heavenly bodies at that time, is .0042,

which will leave us for the moon's longitude (G6) 6G°.9089 ; for the

sun's (18) G5°.3452, and for the moon's node (13) 60°.9966.

77. There is another inequality in the rate of the Precession of

the Equinoxes, called Solar Nutation, and occasioned by the vari-

able distance of the sun from the plane of the equator in the course

of a year. But it is so small (never amounting to much over one

second) that it may be disregarded without material error.

CHAPTER X.

TRUE TIME LONGITUDES AXD ANOMALIES.

78. By comparing the true longitudes of the sun and moon, found

in the last chapter, we find that the latter is greatest by 1°.5637,

which shows that the moon has passed by the sun, and that the

eclipse is over. It remains (12) for us to subtract such an amount

from the mean time of new moon (11) as it must have taken the

moon to gain this difference, and in order to do so, we must know
the relative velocities of the sun and moon in their orbits at the

time.

Their motions are swiftest in perigee, and grow slower as they
recede from it ; hence their anomalies are the proper arguments for

determining their motions. We may therefore enter tables 20th

and 21st, with the anomalies of the sun and moon respectively as

arguments, and take out their hourly motions. The former we
find to be .0401, and the latter .5018.

All the other inequalities treated of in the preceding chapters,
must likewise affect the moon's hourly motion, of which Variation

and Evection are the most important. The effect of Variation, as

is plain from the theory, is to increase the moon's velocity in syzy-

gy and diminish it in quadrature. Now, in an eclipse, the moon is

always in syzygy, and hence we must add to its hourly motion

the quantity given in the margin of table 21st. To correct the

4
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moon's hourly motion for Evection, we must enter table 22d with

the same argument that was used for that inequality in article GOth,

and in the middle column we find the equation, which is to be ap-

plied to the hourly motion according to its sign.

The following is the operation in the case before us :
—

Moon's hourly motion, by table 21st, - - .5018

Add for Variation, .0115

.5133

Subtract for Evection, by table 22d, - - .0092

.5041

Subtract sun's hourly motion, - .0401

Hourly gain of the moon upon the sun, - - .4640

Now, by simple proportion, we can find how long it must have

taken the moon to gain the difference in the longitudes of the sun

and moon, viz. 1°.5637. Thus,

.4640 : 1 hour : : 1°.5637 : the time required, which is thus found

to be 3 hours, 22 minutes, and 12 seconds. This subtracted from

the time of mean new moon, found in article 11th, leaves for the

true time of new moon in May, 26d. 8h. 48m. 44sec.

79. The time thus found is Greenwich time, and to reduce it to

that of any other place, allowance must be made for the difference

of longitude, viz., 4 minutes of time for each degree of longitude.

It is also to be observed, that the astronomical day begins at noon,

and counts the 24 hours round to the next noon.

80. The longitudes and anomalies of the sun and moon must

now be corrected, by subtracting their motions during the correc-

tion just applied to the time. If that correction had been additive,

this would be so also. The amount can be easily found from their

hourly motions, thus—
One hour : the moon's hourly motion, viz., .5041 : : 3h. 22m. 12

sec. : the correction required in its longitude and anomaly, which

is thus found to be 1°.6988.

One hour : the sun's hourly motion, viz., .0401 : : 3h. 22m. 12

sec. : the correction required in its longitude and anomaly, which

is thus found to be 0M351.
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At the same time the longitude of the node must be corrected,

by taking from table 4th its motion during the same time, and ap-

plying it, with the contrary sign from that of the other motions,

because it moves in the opposite direction.

81. The reader will get a clearer idea of the process of calcula-

ting the time of an eclipse, if we now give a synopsis of the

work that we have been through in the foregoing chapters.

EXAMPLE.

Showing the method of calculating the time of a Solar Eclipse.
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82. It can hardly fail to suggest itself to the attentive reader,

that so great an alteration in the time, as that which was made in

article 78th, must in some degree vitiate the result of our work.

The anomalies, and nearly all the arguments for the inequalities

would vary in the interim. It would hence seem desirable to have

obtained, if possible, some nearer approximation to the true time at

the outset. The "
preliminary equations"* in tables 27 and 28 are

designed for this purpose, but the theory of them could not be well

explained at that stage of our work, where it was necessary to in-

troduce them, if at all.

The construction of these tables is as follows. Since at the time

of new or full moon, the argument for evection is the same as that

for the equation of the moon's centre, viz., the moon's mean anom-

aly, the separate effects of the two on the time are united in the

first preliminary equation. Also, since both the equation of the

sun's centre, and the annual equation of the moon's longitude, de-

pend on the sun's anomaly, they are united in like manner in the

second preliminary equation.

After having found the time of mean new or full moon, as des-

cribed in article 11th, we apply to it these equations, and then take

from table 4th the mean motions in longitude and anomaly during

the time so applied. These motions applied to the mean longitudes

and anomalies at the mean time, give the mean longitudes and an-

omalies at the corrected time ; and wre then proceed to calculate

the true longitudes at the corrected time, in the same manner as

we have done for the mean time in the foregoing chapters. We
will illustrate, by example, the method of using these tables, and at

the same time show how to calculate a lunar eclipse.

83. It will not be necessary to give much more than a synopsis

of the operation, as the time of a lunar eclipse is calculated precise-

ly in the same manner as one of the sun, only that the half lunation

in table 3d, is used in order to give the time of mean full moon,

and the longitudes of the sun and moon, instead of being made to

agree, are made to differ just 180°.

Let us inquire whether there will be an eclipse of the moon
when the sun passes its ascending node in the year 1844.

Turning to table 2d, we find that the longitude of the ascending

* These are the same as those usually termed 1st and 2d equations of the mean to

ihe true syzygy.
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node in March of that year is 258°, and we therefore (11) take

from table 3d such a number of lunations as, added to the half lu-

nation at the foot of the table, will contain 258 days, or thereabouts.

In 8£ lunations there are 251 days, which is the nearest to 258

that we can get from the table. This will carry the time forward

to November, and will give us for the longitude of the sun 244°,

and of the node about 245°. The sun will, therefore, be but 1°

from the node, and so far within the lunar ecliptic limit (7) that

there cannot fail to be an eclipse of considerable size. We will

proceed to calculate it. From tables 2d, 3d and 5th, we obtain

the following :
—
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84. After applying these corrections to the time, longitudes and

anomalies, the process of calculation is, throughout, the same as

for a solar eclipse, with the exception already mentioned* and it is

unnecessary to go through it in detail. The following is a synop-
sis of the calculation :

—
EXAMPLE.

Showing the method of calculating the time of a Lunar Eclipse.
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CHAPTER XL

ELEMENTS OF AN ECLIPSE.

85. The following elements or data, are all that are needed for

making any calculation that we may desire in regard to an eclipse,

either solar or lunar ; such as the place on the earth's surface,

where the sun will be centrally eclipsed at any given time, while

the eclipse lasts
; the portions of the earth where an eclipse will

be visible, and the time when it will commence, become a maxi-

mum, and terminate ; or the size of an eclipse, at any given place
and time. The 10th is not needed in solar eclipses, nor the 2d, 3d,

and 12th in lunar.

1st. The time of new or full moon.

2d. The longitudes of the sun and moon.

3d. The obliquity of the ecliptic to the equator.
4th. The moon's latitude.

5th. The sun's hourly motion.

6th. The moon's relative hourly motion, or the excess of its

hourly motion over that of the sun.

7th. The sun's apparent semidiameter as seen from the earth.

8th. The moon's do.

9th. The apparent semidiameter of the earth as seen from the

moon, which is the same as the moon's horizontal parallax.
10th. The apparent semidiameter of the earth's shadow where

it eclipses the moon, as seen from the earth.

11th. The angle of the moon's visible path with the ecliptic.

12th. The sun's declination.

86. The method of obtaining the first two, was explained in the

last chapter.

87. The mean obliquity of the ecliptic to the equator in the year

1840, was 24° 27' 62".52, but it decreases at the rate of about half

a second a year, owing to the attraction of the planets. Il is also

subject to an inequality, whose period is about 19 years, depending
on the longitude of the moon's node : for it is evident from the

theory of lunar nutation, that the moon's influence must affect the
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obliquity of the equator to the ecliptic, as well as the place of their

points of intersection. Table 23d gives the obliquity on the 1st of

January in each year of the present century after 1840, taking both

these causes into account, from which it can be readily found for

any time in the year by inspection. In January, 1854, it is 23° 27'

33".6, and in January, 1855, it is 23° 27' 35".7. Hence, at the

time of our solar eclipse in May, 1854, it is 23° 27' 34".5.

88. The moon's latitude depends on its distance from the node,

and the inclination of the plane of its orbit
; but the inclination, and

also the place of the node, varies according to the situation of the

sun in respect to the node. Hence there are two principal equa-
tions of the moon's latitude, one depending on the distance of the

moon from the node, and the other on that of the sun. Now in

eclipses, the distance of both luminaries from the node is the same,
so that the two equations may be combined into one, which is done

in table 24th. The argument is found by subtracting the longitude
of the node from that of the sun and moon, which leaves, in our

solar eclipse, 4°.2061, and in the lunar, 177°.9274. The moon's

latitude, as determined by these arguments, is, in the former case,

the decimals of a degree .3664, or a little over one-third of a de-

gree, and in the latter, .1810. It is to be noticed, that in table 24th

the figures of the argument at the right and left are whole degrees,
and those at the top and bottom the first place of decimals.

It must be readily seen, that the moon's latitude must be north

for the first 180° after it leaves the ascending node ; and that it

moves northerly, or ascends, through the first quadrant, and south-

erly, or descends, through the second : also, that in the other half

of the orbit, its latitude must be south, being descending in the first

quadrant, and ascending in the second. These facts are indicated

in the table by capital letters at the head of the columns containing

the argument.

89. The method of finding the 5th and 6th elements was explain-

ed in the last chapter, (78 :)
but if much accuracy were required,

they w
rould have to be now computed over again for our solar

eclipse, because the anomalies have been changed. Calculated

from the anomalies as finally corrected, in the same manner as

was done in article 78, the hourly motion of the sun in our solar
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eclipse we find to be .0401, and in the lunar .0421 ; and the rela-

tive hourly motion of the moon is .4649 in the solar eclipse, and

.4523 in the lunar.

90. The 7th element is obtained from the 1st column of table

26th, where it is sufficiently explained.

91. Table 21st, columns 1st and 3d, give the 8th and 9th ele-

ments, so far as they depend on the elliptical form of the moon's

orbit. But the effect of Variation is to throw the orbit into a kind

of oval, with its shortest diameter lying in syzygy. From this

cause, the distance of the moon from the earth is less when it is

new or full than at other times, which must increase their apparent
size as viewed from each other. Hence the corrections in the

margin of table 21st. Also Evection, by altering the shape of the

moon's orbit, affects its apparent size and parallax, so that a far-

ther correction becomes necessary from table 22d. The following

shows the method of obtaining these elements for the eclipse of

May, 1854 :—
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The sun's parallax is .0024

The moon's do., as just found, is - - - - .8989

.9013
The sun's semidiameter (see 7th element) is - - .2707

The semidiameter of earth's shadow is - - - .6306

93. The angle which the moon's path makes with the eclip-

tic varies according to the moon's distance from the node. When
at the node, it makes the same angle as the planes of the two or-

bits; but when it is 90° from it, its motion becomes parallel to the

ecliptic. But the inclination of the planes also varies, depending,
as was remarked above, on the distance of the sun from the node.

The two influences may, however, be combined into one at the

time of an eclipse, in the same manner as in table 24th. And not

only does the real angle vary from both these causes, but the ap-

parent angle is increased by the earth's motion in the same direc-

tion ; and since the rate of the latter, as compared with the moon's

motion, is quite variable, the apparent angle must vary also from

this cause. All these causes are taken into account in table 25th.

This table has two arguments, viz., 1st, the difference between the

hourly motions of the sun and moon, (for the motion of the earth is

measured by the apparent motion of the sun,) the first two decimal

places of which are placed at the top ; and 2d, the distance of the

sun or moon from the node, which is placed at the right and left.

In the solar eclipse we are calculating, the former (89) is .4649,

and the latter (found by subtracting the longitude of the node from

that of the moon) 4°.2061. These give the angle 5° 44' 33",

ascending. In the same way the angle at the time of our lunar

eclipse is found to be 5° 45' 41" descending.

94. The sun's declination, which is our 12th element, can easily

be computed from its longitude by spherical trigonometry, since

the obliquity of the ecliptic is known, (87 ;)
for its longitude, right

ascension, and declination form a right-angled spherical triangle,

of which an angle and one side is known. Table 26th gives the

declination calculated from the obliquity in the year 1840, which

is sufficiently exact for our purpose, though, after a lapse of years,

it must evidently need correction. Entering this table, with the

sun's longitude at the time of our solar eclipse as an argument, we

obtain the declination 21°.1871.
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Since the sun starts northerly from the vernal equinox, its decli-

nation must be north for the first 180°, and south through the rest

of the orbit. This fact is indicated by the capital letters at the

head of the columns of the argument.

95. The elements collected are as follows :
—

1. True time of the eclipse,
2. Longitude of the sun and moon,....
3. Obliquity of ecliptic to equator,
4. Moon's latitude,

5. Sun's hourly motion,
6. Moon's relative do
7. Sun's apparent semidiameter,
8. Moon's do
9. Moon's horizontal parallax,,

10. Semidiameter of earth's shadow, ....

1 1. Angle ofmoon's visible path with eclip.
12. Sun's declination,

Solar Eclipse.

d. k. m. 8.

May 26 8 48 44
,

65°.2101

23° 27' 34".5

0°.3664 (north)
0°.0401

0°.4649
0°.2635

0°.2479

0°.9090

5° 44' 33" (ascend.)
2l°.187l (north)

Lunar Eclipse.

d. h. m. s.

N"ov. 24 11 40 17

0°.1810 (north)
()°.0421

0°.4523
0°.2707

Q°.2453

3°.8989

(J°.6306

5° 45' 4i" (descend.)

CHAPTER XII.

DELINEATION OF A SOLAR. ECLIPSE.

9G. To find whether a solar eclipse will be visible at a particu-

lar place, and if so, its size and general appearance there, it is more

convenient to first reverse the order of viewing the phenomenon,
and to suppose the spectator placed at the centre of the sun, to

look down upon the earth, and see the moon passing across its disc.

From so vast a distance, the earth wofla
1

appear to him, as the sun

does to us, like a flat circular disc. The circle of illumination

would be to our observer the circle of the disc, and all circles

whose planes were perpendicular to this would be seen edgewise,
and would appear to him like straight lines. Their arcs would seem

to be only of the length of the straight lines that they would sub-

tend, as viewed by him. Such circles as were seen obliquely,

would appear elliptical in their shape. Let us suppose him to take
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his station when the sun is in the vernal equinox, about the 21st of

March, and to retain it for a year, accompanying the sun in its ap-

parent annual round. Being always in the plane of the ecliptic, it

would appear to him like a straight line dividing the earth into two

equal parts, one half lying north and the other south of it. At first

also, being in the plane of the equator, it too would be seen as a

straight line, as well as all the parallels of latitude ; yet not paral-
lel with the ecliptic. The west end of the

equator would be north of the ecliptic

and the east end south, crossing it in the

centre at an angle of about 23^°, as in

Fig. 17, where AB represents the eclip-

tic, CD the equator, PP' the earth's axis,

P and P' its poles, GH the axis of the

ecliptic, and 1 1, 2 2, 3 3, &c, parallels

of latitude.

As the sun advances, it gets north of the plane of the equator and

of the parallels of latitude, and they will no longer appear as

straight lines, but will seem bent downward toward the south.

The earth's axis will approach to parallelism with that of the eclip-

tic ; and the poles revolving in circles whose planes are parallel to

that of the ecliptic, will seem to move in straight lines toward n

and s till on the 20th of June, or thereabouts, when the sun reaches

the summer solstice, the two axes will coincide, and the north pole

will be seen at n. The south pole will be invisible, being hid be-

hind a segment of the earth ; but if the earth were transparent it

would appear at s.

97. The sun still advancing, the earth's axis will appear again

on the other side of GH, the poles will approach toward N and S,

and the parallels of latitude will become less curved. And when

the sun reaches the auturmtal equinox, in September, the latter will

again become straight lines, but lying the opposite way from what

they did in March, and the poles will appear at N and S.

08. As soon as the sun has passed the autumnal equinox, the

parallels of latitude will appear curved again, but upward toward

the north, instead of downward, because the sun will now be on

the south side of their planes. The poles will recede along the
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iines NP and SP', passing n and s when the sun is at the winter

solstice, in December, and finally arriving at P and P' about the

'21st of March, when everything assumes the same aspect»as when

he started.

99. A common terrestrial globe will serve to present these vari-

ous appearances to the reader's view, in a much clearer light than

can be done by any verbal description. Let the north pole be

elevated about 662 above the point marked "
North," on the wood-

en horizon, and then the latter will represent the ecliptic. If now
the globe be placed upon a table in the centre of the room, so that

the wooden horizon may be on a level with the eye, and the read-

er, after having found the 21st of March on the horizon, should

retire across the room in that direction, he will see the globe pre-

cisely as represented in Fig. 17. Let him now pass slowly round

the room in the order of the months on the horizon, and all the ap-

pearances we have described will be presented to his view.

100. When he is in the direction marked May 26, he will have

a true representation of the earth, as it would appear to our obser-

ver at the sun,, at the time of the solar eclipse we have been calcu-

lating. We will endeavor to represent the same by a figure, and

also the appearance of the moon passing over the earth's disc. In

order to give proper proportions to the several parts of our figure,

we must be able to mark down their relative dimensions. In com-

mon plans and drawings these are given in miles, feet, inches, or

some other direct measure of length ; but in astronomy it is found

more convenient to determine them by the angle which they would
subtend when viewed from a given distance, as we did in the last

chapter. And this answers the purpose just as well, provided the

distance be sufficiently great, for the apparent would be very near-

ly proportional to the real size of the object. The dimensions

which respect the moon and earth, given in the last chapter, are

the angles that the objects would subtend at a distance of about

237,000 miles, or the distance between the earth and moon. The
reader must not here fall into the error of supposing that our obser-

ver has changed his position. He is still at the sun, and these an-

gles are given merely for the purpose of determining the relative

sizes of the objects that we wish to draw.
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101. Our first business is to make a scale SS (Fig. 18) of any

convenient length, and divide it into 100 equal parts. This scale

may be considered to be of such length, that if seen perpendicularly

at the distance of the moon from the earth, it would subtend an

angle of one degree, and of course each of the parts would subtend

.01 of a degree. The earth's semidiameter (95) seen at that dis-

tance, subtends an angle of 0°.O090. If therefore, with this dis-

tance, taken from our scale, as radius, (counting the two first deci-

mals places, with a proper proportion for the two last,) we describe

the semicircle AGB, the line AB may represent that portion of the

plane of the ecliptic which intersects the earth, and the whole se-

micircle AGB, the half of the earth's disc that is seen north of it.

Or, which is the same thing, AB may represent the wooden hori-

zon of the globe adjusted as above described, and AGB the half of

the globe that is above it.

102. We will next find the position of the north pole of the

earth, i. e., the point on the disc where it would be seen. A glance

at the globe will show that it is not at the top, nor anywhere in

the circumference of the disc. In fact, we have shown (96) that

it must appear to move in the right line PN, leaving P about the

21st of March, and arriving at n about the 20th of June. Hence,

at the time of our eclipse, it must be between P and n. Its precise

position we are able to determine; for its motion in the small circle,

which, seen edgewise, is represented by the straight line PN, is

just equal to that of the sun in longitude. Consequently the num-

ber of degrees that it has moved from P must be equal to the sun's

longitude. The plane of this circle is evidently perpendicular to

the surface of the paper, yet for the purpose of bringing the gradu-

ation in sight, we will suppose it to turn on the diameter PN, till

it lies flat down, as PHN. The reader must not suppose that any
circle will be seen in this position by our observer ; it is merely
drawn so temporarily, for the purposes of measurement. The

sun's longitude being 65°.2101, the north pole must be that number

of degrees from P, which would bring it to T ; and this point,

when the circle is turned up again into its place, edgewise upon
the paper, would be seen at C, which is hence the position that the

north pole must occupy on the disc ; and the line CE must repre-

sent the northern half of the earth's axis. We shall have no fur-

ther use for the temporary circle PHN, as drawn, and may, if we
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choose, erase it, since it forms no part of the representation that

we wished to draw. It merely served to enable us to find the po-

sition of the north pole of the earth, which is now effected.

103. The delineation of a parallel of latitude on the disc will

show how the diurnal path of a place would appear to our obser-

ver. We will select for the purpose that of the Astronomical Ob-

servatory of Williams' College, lat 42° 42' 51", Ion. 73° 12' 33"

west from Greenwich ; the former of which, converted into de-

grees and decimals by the aid of tables 30 and 31, is 42°.7142. If

the latitude were just equal to the sun's declination, the sun would

be vertical at noon, and the Observatory would be seen precisely

in the centre of the disc at E ; but since it exceeds it by 21°.5271,

the Observatory must be seen that distance north of the point

where the sun is vertical, which when projected on the disc, would

become the sine of the arc, measured from E, on the axis EC. To
find the length of the sine, we may count the degrees upward from

A, and draw the sine DD, the length of which, when applied from

E toward C, will reach to the point 12. This point must therefore

be the apparent position of the Observatory at noon.

104. If the earth were transparent, it would be seen at midnight

considerably farther north, as is evident from an inspection of the

globe. The point antipodal to that at* which the sun is vertical, and

which also would be seen at E, is as many degrees south of the

equator as the sun's declination is north. Hence the distance of

the Observatory from this point at midnight, must be equal to the

latitude of the former added to the sun's declination, which amounts

to 63°.9013. This arc. like the former, when projected on the disc,

will be seen on the axis EC, equal only to the length of its sine,

which we may find in the same way, by counting the number of

degrees upward from A, drawing the sine, LL, and laying it off on

the axis from E to K. The point K will then represent the appa-

rent place of the Observatory at midnight.

105. The line K-12 will be the shortest diameter of the ellipse,

into which the parallel of latitude appears to be thrown by being

seen obliquely ; the point O, midway between K and 12, its centre,

and the line 606, drawn through O at right angles to EC, its long-
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est diameter. The lines 06. not being foreshortened by being seen

obliquely, will appear of the full length of the radius of the parallel,

which, we know, is the cosine of the latitude. The complement of

the latitude of the Observatory is 47°.2858, and we may find RJl,

its sine, in the same way as we did the others. Setting off the

distance RR each way from O to 6 and 6, we find the extremities

of the longest diameter, which must be the points on the disc where

the Observatory will be seen at 6 o'clock in the morning, and. at

the same hour in the evening.

106. Its position at any other hour in the day may be found by
the following process. Draw two circles, 6M6 and F'KV, one

on the longest and the other on the shortest diameter of the ellipse,

and divide each into 24 parts, in the points 7, 8, 9, 10, &c. corres-

ponding to the hours of the day. Through the division points of

the former circle, draw straight lines parallel to EG, the earth's

axis ; and through those of the latter, at right angles to it. Note

the points where the lines that pass through the same hour on both

the circles intersect each other, and through them draw the ellipti-

cal curve seen in the figure. This curve will represent the paral-

lel of latitude that we wished to delineate, or the path of the Ob-

servatory over the disc* The several points of intersection mark

its position at the different hours. The two last circles, with the

lines connected with them, except the path of the place, may be

drawn in pencil mark, that they may be erased after the latter is

drawn, since they are of no further use.

107. The construction we have just completed will show us, if

we wish, the time of sunrise or sunset, by noticing at what hour

the path of the place cuts the circle of the disc. In this case, it is

a little before 5 o'clock in the morning, and a little after 7 in the

evening.

108. The moon's latitude (95) is 0°.3664 north. We will there-

fore take this distance from the scale SS, and measure it from E
toward G, which gives X as the place where the centre of the moon

* The reader will readily see that if the sun's, declination had been as far south as it is

north in this case, the points K and 12 must exchange places, and the curve representing
the path of the Observatory must lie on the upper side of 606.
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will appear to our observer to cross the line EC The propriety
of this step will appear from the following considerations :

—
1st. The longitude of the moon, when new, is the same as that

ofJhe sun viewed from the earth, or of the earth viewed from the

sun ; it must therefore be seen in the line EG.
2d. Its latitude is north, therefore it must be seen above the line

AB, and not below it, as it would be if its latitude were south.

3d. Its latitude, as given in article 95, is supposed to be measur-

ed at the same distance as the other angles for which our scale

was made, so that the scale furnishes the proper measure.

The only error that is to be noticed, is that the moon's centre,

as seen by our observer projected on the earth's disc, would be a

little farther from the ecliptic than its real distance, owing to the

divergence of the visual line between the moon and earth. Since

however the distance of the sun is so great, the lines drawn from

the observer's eye to the centres of the moon and earth must be

very nearly parallel, and the divergence just named so small, that it

may be disregarded.

109. At the time of our eclipse, the moon's path makes an angle

of 5° 44' 33" with the ecliptic, tending north. If, therefore, we
draw Ey, making an angle of that size with EB, and YZ par-

allel to it, the latter line will represent the apparent track of the

moon's centre across the earth's disc. It passes X at 48 minutes

and 44 seconds after 8 in the evening, by Greenwich time, (95,)

which, by Williamstown time, is 4 minutes and 6 seconds before 4

in the afternoon. The precise point where it will be at 4 o'clock,

or any other instant we may choose to name, may be found from

its relative hourly motion, viz., 0°.4649. Taking this distance from

our scale, SS, dividing it into 12 equal parts, and thus making the

smaller scale, ss, we have its motion in 5 minutes. With the aid

of this we can judge by the eye how far it would move in 4 min-

utes and 6 seconds, and setting off this distance from X toward Z,

we find its position at 4 o'clock. Its position at the hours 2, 3, 5,

6, &c, may now be found by measuring off its hourly motion each

way from 4. The hourly divisions may now be subdivided at

pleasure. In the plate they are divided into quarter hours.

110. The appearance of the moon as projected upon the earth's

disc, may be shown by taking its semidiameter, 0°.2479, from the
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scale SS, and with it describing a cirele, as d b c ; selecting for a

centre, the point where the moon's centre will be at the time for

which we wish to represent its appearance. The plate shows how

it will appear at 32 minutes past 5, the time at which its centre

erosses the diurnal path of the Observatory, according to our draw-

ing. At that time the Observatory will be at W, a little more

than half way from 5 to G on its diurnal path, and very nearly co-

inciding with the moon's centre. It must therefore be invisible to

our observer, being hid behind the moon ; and the same must be

true of a large tract of country about it ; for although part of the

moon has passed off from the earth's disc, the remaining part cov-

ers the parallel of latitude between the hours 8 and 7, and some-

what more. This will amount to over 60° of longitude, reckoning

15° for each hour, which would extend from the Rocky Mountains

on the west, about one-third of the way across the Atlantic on the

east. Of course the inhabitants of this entire tract must be unable

to see the centre of the sun at the time of which we speak, and at

Williams' College almost its whole disc must be hid ; for it has just

been shown that the locality is almost in .perfect range with the

centres of the sun and moon.

111. It is not difficult to determine precisely What part of the

disc will be concealed from view, or eclipsed. Suppose a line to

be drawn from the Observatory to the centre of the sun, and a

point to be taken in it at the distance of the moon. Let another line

be drawn through this point, from one edge of the sun, and contin-

ued so as to meet the earth's disc, at a considerable distance, evi-

dently, from the Observatory. If now the upper end of this line

be carried round the circumference of the sun, the lower end would

describe a circle on the earth's disc, having the Observatory for

its centre. And the line itself would describe two similar cones,

having a common vertex near the moon, and their bases, one upon
the sun, and the other upon the abovementioned circle on the earth's

disc. As seen from the centre of the sun, this circle would have

precisely the same situation in respect to the moon, that the sun

would have as seen from the Observatory ; so that if a portion of

this circle be hid from our observer at the sun, by some intervening

object, a like portion of the sun would be hid when viewed from

the Observatory. We wish then, to determine the size and posi-

tion of this circle at 32 minutes past 5, that we may see how large
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a part of it is covered or concealed by the moon. As viewed from

the fixed point spoken of, near the moon, it and the sun would evi-

dently subtend the same angle. But the sun would subtend very

nearly the same angle, whether seen from that point or from the

earth, for the relative distances are nearly the same. Now the

sun's semidiameter, seen from the earth, at that time subtends an

angle of 0°.2635 ; therefore this circle must, at the distance of the

moon, subtend the same angle. Hence we may take this distance

from the scale SS, and with it discribe the circle a b c, from the

centre W, the position of the Observatory at the time, and we have

the circle in question ; showing that a very slender crescent of

light will be seen on the south side of the moon.

The width of this crescent is usually described, by dividing the

diameter of the circle into 12 equal parts, called digits, and seeing
how many of these it contains. In this case it contains about one-

fourth of one of these divisions, leaving 11 3-4 digits eclipsed.

112. The eclipse must evidently commence at Williams' College,

as soon as the moon and the circle that we last drew begin to in-

terfere, which must be as soon as the distance between their centres

becomes less than the sum of their semidiameters. The two semi-

diameters added together make 0°.5114, and we may take this dis-

tance from the scale SS, and setting one foot of our compasses on the

moon's path, some distance to the left of W, and the other on that

of the Observatory, move them backward or forward till both feet

stand on the same hour and minute, which must be the time when

the eclipse commences. By a similar operation at the right hand

of W, the time of the end may be found.

The results, according to our drawing, are as follows :
—
h. in.

Beginning,
- - - - 4 15

Greatest obscuration, 5 32

End, 6 38

Duration, 2 23

Digits eclipsed,
11 3-4

113. We may derive from Fig. 18th a method, by which the

size and appearance of a solar eclipse, at any given time, and place

may be calculated mathematically. The tabular latitudes and lon-

gitudes of the sun and moon are calculated for the centre of the
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earth, and are consequently correct only where the sun and moon

are vertical, or in the zenith. At all other places they would be

affected by parallax. If the place were situated so as to appear on

the disc above or below AB, the parallax would affect the latitude,

and if on the right or left of GE, the longitude would be affected.

Thus V is the place of the Observatory at 3 o'clock P. M. on the

day of our eclipse, and E that at which the sun is vertical and the

moon nearly so, not differing from it more than about J
9

. Hence
VE is the sine of the zenith distance, to which the total effect of

parallax is always proportional. Draw VX at right angles to AB,
and it will represent the effect of parallax upon the latitude of the

sun and moon, and EX upon the longitude.

Having computed the elements (95) for the time at which we
wish to represent the appearance of the eclipse, the arc GP, which

is equal to the obliquity of the ecliptic to the equator, will be known,

and calling the radius of the semicircle AGB unity, Vn and E?i can

be found. Again, since P/i, the radius of the circle NHP, is now-

known, and also the arc PT, being equal to the sun's longitude, Cn
can be found. Then in the right angled triangle EwC, the two

sides E;i and Cn are known, and we can find the angle GEC.

If we let s represent the sun's longitude, and m the obliquity of

the ecliptic to the equator, then tan. GEC=tan. mxcos. s.

The lines EK and El2 are the sines of the sum and difference of

the latitude of the place and the sun's declination, and are there-

fore known : hence EO, which is equal to half the sum, can be

found.
V

The line OO is known, being the cosine of the latitude, and also

the arc MF, being the hour arc from noon, or the interval between

noon and the time to which the calculations refer converted into

degrees ; hence 01, which is the sine of this arc, or its equal UV,
and also IF its cosine may be found. IV is equal to IF foreshort-

ened in the ratio of radius to the sine of the sun's declination, and

is therefore known ; and subtracting* it or its equal OU from EO,
we shall have EU. Now in the right angled triangle EUV, the

sides EU and UV are known, and we can find the side EV and

the angle UEV.

* If the sun's declination and the latitude of the place are both north or both south,

subtract
;
hut if one is north and the other south, add.
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If we let / represent the latitude of the place, d the sun's declina-

tion, and t the hour arc from- noon, then

UV— sin. Zxcos. I

EU=sin. Zxcos. d±*cos. Zxsin. d cos-, t

sin. t

tan. UEV=
cotan. /xcos. c?±*sin. flfxcos. t

We now have the angles GEO and UEV, which, added togeth-
er and subtracted from 90°, leave the angle VEX. We have also

the line EV. Hence, in the right angled triangle VEX, we are

enabled to find EX and VX. Since the parallax of a heavenly

body at any altitude is equal to the horizontal parallax mutiplied

by the sine of the zenith distance.f which in this case is EV, it fol-

lows that if we multiply it by EX, we shall get the effect of paral-

lax on the longitude, and if by VX, on the latitude.

The value of EV and the angle UEV may be obtained, if pre-

ferred, by another process. The co-latitude of the place of obser-

vation, the co-declination of a heavenly body and its zenith distance

form a spherical triangle, in which the two former parts are in

this case known, and also the included angle, being the hour angle
from noon. Hence the third side can be found, the sine of which

is EV, and the remaining angles. Now, by the principles on which

Fig. 18 is constructed, the angle UEV is the same as that opposite

the co-latitude in the sperical triangle, and is therefore known.

Having corrected the latitudes and longitudes of the sun and

moon for the effect of parallax, their differences will form two sides

of a right angled triangle, and the distance between their apparent

centres will be the hypothenuse. By comparing the latter with

the apparent semidiameters of the sun and moon, the size of the

eclipse can be readily determined.

Our 8th element is the moon's apparent semidiameter, as seen

from the centre of the earth ; but the distance of the moon from

any place on the earth's surface at which it is visible (save when

it is in the horizon) is less than from the centre, which must cause

it to subtend a greater angle. The augmentation is a maximum

when the moon is in the zenith, and grows less when it recedes

from it ; hence the sine of the zenith distance, EV, is the proper

* See note on preceding page.

f Olmsted's Astronomy, Art. 82.—Herscheirs do., Art. 303.—Norton's do., Art. 98.

Gunmearc'a do., Chap, v., Art. 5.
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argument for determining the amount of the augmentation, and is

so used in table 29th.

We will show the results of such calculations as we have been

describing, by applying them to our eclipse at 32 minutes past 5,

the time at which.it is represented in Fig. 18th. After computing
the necessary elements for the time and the parallax, as above des-

cribed, we have the following :
—
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CHAPTER XIII.

CENTRAL TRACK OF A SOLAR ECLIPSE.

114. If we examine the plate principally referred to in the last

chapter, (Fig. 18,) we notice that the moon's track crosses the

path of the Astronomical Observatory of Williams' College twice ;

once about 20 minutes before 4, and again about 32 minutes past
5. In the first instance, it crosses far west of where the Observa-

tory will be at the time, and in the second, a little east. Counting

every hour as 15° of longitude, the point where it first crosses is

about 70° west of the Observatory, which carries it into the Paci-

fic ocean, not far from Astoria. It crosses the second time at a

point about 3° east of the Observatory, which is in the Atlantic

ocean, off Cape Ann. If we had numerous elliptical curves drawn

to represent the different parallels of latitude, we might, by a pro-

cess analagous to the foregoing, determine over what countries of

the earth the moon's centre, or more strictly, the centre of its

shadow would pass, from the time it first struck the disc on the

west side, till it passed off on the east. There is however an ea-

sier way of effecting this, by means of a figure of different con-

struction, used in connection with a terrestrial globe.

115. Let ANB (Fig. 10) represent the northern half of the

earth's disc, as seen from the sun, YZ the moon's track, with the

hours of Greenwich time marked on it, AB a portion of the eclip-

tic, as in Fig. 18, in the last chapter, and the curved lines seconda-

ries to it, orthographically projected at intervals of 15°.

Now to adjust the globe so as to correspond with this figure,

elevate the north pole, as directed in the last chapter, (99,) and at

the point that answers to N in the figure. 90° above the wooden

horizon, which now represents the ecliptic, or 23^° from the north

pole of the earth, screw on the graduated quadrant of altitude. ,

By swinging the other end round, between the globe and the in-

side of the wooden horizon, it may be made to represent any of

the lines NA, N«, N6, &c. Or we may screw it on at S, and thus

represent the other half of the curves, which becomes necessary

when the moon's latitude is south.
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Fig. 19.

The point E in the figure corresponds, in the present case, to

that marked May 26th on the wooden horizon, and consequently

the points A and B must be found 90° from it on each side. If the

lower end of the quadrant of altitude is brought to one of these

points, we shall have a representation of the arc NA ; and if to the

other, of NB. Our figure shows that the moon's track crosses the

former about 16° 40' above A, and the latter about 29° above B.

|The graduation of the quadrant of altitude would readily show

where these places are on the globe, were it not for its diurnal

revolution, which we must next take into account.

116. It is evident that the sun must always be just rising at all

places situated on the line NA, and just setting at all on the line
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NB. Now, at the equator, the sun rises invariably at 6 o'clock in

the morning, and sets at the same hour in the evening. Therefore,
at 8 minutes before 7 in the evening, by Greenwich time, when,

according to our drawing, the moon's centre first strikes the earth's

disc, it must be just 6 o'clock in the morning at the place where
the equator cuts the arc NA, (compare Fig. 17.) The question is

then reduced to this, viz., at what place on the equator is it 6

o'clock in the morning, at the same time that it is 8 minutes before

7 in the evening by Greenwich time ? Converting the time into

longitude, the point in question is found to be in the Pacific ocean,

a little southwest of Mulgrave's island, in longitude 167° east from

Greenwich.

Turn the globe on its axis till this point is brought under, the

quadrant of altitude, (the latter being adjusted so as to represent NA,)
and count 16° 40' upward from the wooden horizon, and we shall

discover the place where the centre of the eclipse first strikes the

earth. The experiment shows it to be near the Caroline Islands,

lat. 7° north, and Ion. 164° east.

117. According to our drawing, the centre of the eclipse leaves

the earth at 29 minutes past 10 in the evening, by Greenwich time,

but at the point where the equator cuts the arc NB it is but 6

o'clock in the evening. The longitude corresponding to this differ-

ence in time is 67{° west, which is in the southern part of Vene-

zuela, in South America. Now turning the globe on its axis till

this point is brought under the graduated quadrant, (adjusted so as

to represent NB,) and counting upward 29° from the wooden hori-

zon, we find that the eclipse leaves the earth in the Atlantic ocean,

about 800 miles easterly from Bermuda.

118. Let it now be required to find where the eclipse is central

at any time during its passage across the disc; suppose at 10

o'clock P. M.

Through the point of division representing 10 o'clock on the

moon's track, draw sjc parallel to AB. The arc Bx contains about

27£°, which must also be the number of degrees in the arc m 10.

Bring the foot of the quadrant of altitude to m, which is 45° from

E. Turn the globe backward on its axis 7i° from its last posi-

tion, such being the amount of its motion between 10 o'clock and

29 minutes past 10, the time for which we last calculated. The
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27ith degree on the quadrant of altitude, reckoned upward from

the wooden horizon, will mark where the eclipse must be central

at 10 o'clock. We find, on trial, that iris near the west end of

Lake Superior, in North America.
i

119. These mechanical methods give a tolerable approximation
to the point where a solar eclipse will be central at any time ; and

by taking a sufficient number of points, we may delineate its gene-
ral track. But where much accuracy is required, recourse must

be had to calculation. The theory of the following process is the

same as that of the mechanical method just employed.

120. The first step is to find the time when the centre of the

moon's shadow first strikes or leaves the earth,* (I will here adopt
the latter,) and the sun's longitude at the time. The calculation is

a very easy one, if the moon's track across the disc is considered

as a straight line, and the earth as a perfect sphere.

F^ 20. Let ASBK (Fig. 20) repre-

sent the earth's disc, and YZ
the moon's track across it.

In the triangle ELM, the two

sides,EL and EM are known,

the former being the moon's

latitude at the time of new

moon, and the latter its equa-

torial parallax. Also, the an-

gle ELM is known, being

equal to that of the moon's

path with the ecliptic, increased by 90°. Hence we can find the

side LM, and the angle LEM, or its complement MEB. Knowing
the moon's hourly motion, we can easily tell how long it would

take it to pass from L to M, which, added to the time of new moon,

will give the time of its leaving the earth.

The sun's motion in longitude during this interval can be calcu-

lated from its hourly motion, and thus its longitude at the time the

eclipse leaves the earth will be known.

If still greater accuracy be required, the moon's latitude, and

* It is immaterial whether we take the time when the centre of the shadow strikes or

leaves the earth, provided wc make the other parts of the process to correspond.
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the difference in the longitudes of the sun and moon, at the time

last found, can be computed from the tables ; the former of which

is represented by the line MP, and the latter by EP. Also we

may compute again the angle of the moon's path with the ecliptic,

and the horary motions. With these data we could easily calcu-

late the distance of the point M from the circumference, reckoned

on the line YZ, and how long it would take the moon to pass

over it

121. Next, find the longitude of the sun, and the latitude and

longitude of the moon at the time for which we wish to calculate

the position of the centre of the eclipse. This may be done either

from their hourly motions and the angle of the moon's path with

1he ecliptic, or, if greater accuracy be required, directly from the

tables.

Let the sun's longitude thus found = s.

Let the moon's latitude do. = I.

Let the difference in the longitudes of the sun and moon = d.

Let the sun's longitude at the time the eclipse leaves the earth

Convert the time to which the calculations refer into degree?,

minutes and seconds, reckoning 15° for an hour; subtract there-

from 90°, (borrowing 360° if necessary,) and let the remainder

Let the moon's equatorial parallax, which may be regarded as

constant during the eclipse, =p.

Let the obliquity of the ecliptic to the equator =m.

Let P, Pi, Ps, &c. = sundry arcs and angles obtained during

the process of computation.

Let the required latitude of the centre of the shadow = x.

Let the required longitude, reckoned westerly from the meridian

of Greenwich, or of that place for which the time is given,
=

y.
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Then -=sin. P,
P

d •
-r>

=T-:=Sin. Pi,
f p X COS. P

*S±Pl=P2,
sin. mxcos. P2=sin. P3,

tan. ???xsin. p2=tan. P4,

fsin. (P±P4)xcos. P3=sin. a?=the latitude,

cot. s'

cos. m
tan. P2

=tan. Ps,

Pe,
cos. m
sin. P3

cos. x

sin. #xtan. P7=Ps,

jp 5— P 6 +^±Ps=y=the longitude.

The chief difficulty in applying these equations consists in know-

ing which of the four possible values to give to P, Pi, P2, &c.

The following statements will remove all doubt.

P, Pi, P3 and P4 are each always less than 90°.

Ps is always of the same affection as s' increased by 90°.

P6 is always of the same affection as P2.

P7 is less or greater than 90°, according as P is less or greater

than the complement of P4; it never exceeds 180°.

Ps is always of the same affection as P7.

122. It is impossible, by a mere description, to convey to the

reader a clear idea of the reason of the several steps of this pro-

cess ; but if he will take his globe, and adjust it in the same manner

as he would do to find the position of the centre of the eclipse by
the previous mechanical process, he may be able to discover suc-

* If after the new moon -j- ;
if before it —.

t The sign before P4 is + if P2 is less than 180°
;
but — if it is greater. And in the

latter case if P4 is greater than P, the latitude of the place will be opposite in character

to that of the moon ;
i. e. if the moon's latitude is north that of the place will be south,

and the contrary.

X The sign before Ps is -f- if Ps is between 0° and 90°, or between 270° and 360°
;

but — if P2 is between 90° and 270°.
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cessively the arcs and angles expressed byP, Pi, &c. ; and hence

to understand the method by which they are obtained.

P is the distance of the centre of -the eclipse from the ecliptic,

measured on a secondary to it drawn upon the earth's surface, as m
10, (Fig. 19.) Or, it is the latitude of that point in the heavens, on

which an observer, placed at the centre of the earth, would see the

centre of the shadow at the earth's surface projected, if the earth

were transparent.

Pi is an arc of the ecliptic, intercepted between the aforesaid

secondary and the point where the sun is vertical. Or, it is the

difference between the sun's longitude and that of the aforesaid

point in the heavens.

Pa is the same arc increased by the sun's longitude. Or, it is the

longitude of the aforesaid point in the heavens.

P3 is an arc of &. great circle, drawn from the north pole of the

equator, perpendicular to the aforesaid secondary.

P4 is the arc of the secondary, intercepted between this perpen-
dicular and the north pole of the ecliptic.

Ps is the right ascension of that point in the equator where it is

cut by a secondary to the ecliptic passing through the centre of

the shadow on the earth's surface, at the time that, it leaves the

earth ; or, it is the right ascension of that point in the heavens on

which the centre of the shadow would be seen projected at that

time, by an observer at the centre of the earth.

P6 is the right ascension of that point in the equator, where it is

cut by the first mentioned secondary.

P7 is the angle at the centre of the shadow, or at the first men-

tioned point in the heavens, contained between secondaries to the

ecliptic and equator passing through that point.

Ps is the arc of the equator intercepted between these two secon-

daries.

133. To apply the process to a particular case, let it be required

to find the place where the solar eclipse which we have taken as

an example, will be central at 20 minutes and 51 seconds past 10,
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by Greenwich time. After the preparatory steps described in

articles 120 and 121, we have the following data and results :
—

DATA.



80

the south part of the town of Georgia, and from thence passes

through the following towns in Vermont, viz., Fairfax, Fletcher,

Cambridge, Stirling, Morriston, Elmore, Woodbury, Cabot, Dan-

ville, Barnet, Waterford, and reaches the Connecticut river at 21

minutes and 45 seconds past 10. Travelling now about 100 miles

per minute, it passes through the towns of Littleton and Bethlehem,

in New Hampshire, and from thence directly over the Notch in

the White Mountains, and through Adams and Chatham into

Maine. After passing through Fryeburg, Denmark, Bridgetown,

Sebago, and across the pond into Windham, Gray, Cumberland,
and Yarmouth, it strikes the Atlantic in the latter town, about ten

miles, in a direct line, from Portland. It leaves the earth at 28

minutes and 55 seconds past 10, in lat. 32° 36' 6", Ion. 49° 44' 12",

which is in the Atlantic ocean, about 800 miles east of Bermuda.*

Since the apparent size of the moon at the time of the eclipse is

less than that of the sun, (95,) the eclipse cannot be total at any

place ; but along the line we have described, the visible part of the

sun will appear as a very slender bright ring, encircling the moon.

This appearance will extend about fifty miles on each side, taking
in Burlington, Middlebury, Dartmouth, Bowdoin, and Waterville

colleges ; the ring will appear of uniform width only along the

central line. Such eclipses as this are called annular.

CHAPTER XIV.

DELINEATION OF A LUNAR ECLIPSE.

125. The delineation of a lunar eclipse is extremely simple,

since it consists merely in representing the passage of the moon

across the earth's shadow. To show the method of effecting it,

we will proceed to delineate the lunar eclipse of November, 1844,

from the elements obtained in chapter 11th. The angular dhnen-

* By taking into account several minute circumstances that we have disregarded, the

central track of the eclipse may vary slightly from this description, probably passing ten

or fifteen miles further north, and nearly over Bowdoin college.
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sions given in the 4th, 6th, 8th and 10th elements being supposed
to be all taken at the same distance, viz., the distance from the earth

to the moon, will serve as a measure for their absolute dimen-

sions, in the same manner as they did in the solar eclipse.

The first step is to make the larger and smaller scales SS and

ss (Fig. 21) just as was done in the solar eclipse, (101 and 109.)

Take from the longer one the semidiameter of the earth's shadow,

viz., 0°.6306, and with it describe the graduated circle BDAE,
which will represent the shadow. It is evident that the

plane of the ecliptic must bisect the shadow, apd we therefore

draw the two diameters AB and DE at right angles to each other,

the former to represent a section of the plane of the ecliptic, and

the latter its axis.

120. The moon's latitude is 0°.1810 north. We therefore take

this distance from the scale SS, and measure it upward from C
toward D, which gives M as the place of the moon's centre at the

time of full moon. If the latitude were south, the centre would be

found in the line CE.

127. Its path makes an angle of 5° 45' 41" with the ecliptic,

tending south. If, therefore, we draw CF, making an angle of that

size with CB, and YMZ parallel to it, the latter line will represent
the track of the moon's centre across the shadow. It passes M at

40 minutes and 14 seconds past 11 in the evening, by Greenwich

time, anp! its position at any other hour and minute may be found

by graduating the line YZ, as directed in article 109th.

128. By taking the moon's semidiameter, 0°.2453, from the scale

SS, and with it describing a circle from any point in its path as a

centre, the position of the entire disc will be shown, as it must exist

at the time indicated at its centre on the path. It is drawn in the

plate in five different positions : 1st, when it begins to impinge on

the shadow at G, which must be the commencement of the eclipse :

2d, when it just falls wholly within the shadow at H, at which

time the eclipse must begin to be total : 3d, when its centre is at

N, found by drawing CN perpendicular to YZ, and thus (Euc. 3,

2) bisecting the chord, which must be the middle of the eclipse :

4th, when it begins to leave the shadow at L, at which time it

6
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must cease to be total, and 5th, when it entirely leaves the shadow
at P, which must be the end of the eclipse. The respective cen-

tres are at R, S, N, T and V, and the time may be determined

very nearly by the drawing.

129. More accurate results may, however, be obtained by cal-

culating the length of MR, MS, MN, MT and MY, and then find-

ing by the relative hourly motion of the moon, how long it must

take it to pass over them. In the right angled triapgle CNM, the

side CM and the angle MCN are known, being our 4th and lltfr

elements, and we can find CN and MN. The sirfe CN is common
to the two right angled triangles SNC and RNC, and the sides CS
and CR are also known, the former being the difference, and the

lattjr the sum of our 8th and 10th elements. Jlpnce NS anc( NR
can be found, and likewise their equals NT and NV. Now, by

adding and subtracting MN, which is known, we shall have the

lines required.

130. The times obtained by this process are as follows :—~.

Commencement of the eclipse,
- ?

Begins to be total, -

Middle, -

Ceases to be total,

End of the eclipse,

Duration of total obscuration, -

Duration of the eclipse,
-

The foregoing is Greenwich time, but can readily be converted

into that of any other place, by allowing for the difference of lon-

gitude.

If strict accuracy were aimed at, the elements should be calcu-

lated at several intervals during the eclipse, as they are liable to

vary considerably.

h.
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EXPLANATION OF TERMS,

AS USED IN THIS WORK

Ecliptic. The apparent annual path of the sun through the heavens.

Nodes. The points where the orbit of a planet intersects the plane of the ecliptic.

Ascending Node. That through which the planet passes from the south side of the

ecliptic to the north side.

Descending Node. That through which it returns 'to the south side.

Line of the Nodes. A straight line connecting the two nodes.

Equinoctial Points, or Equinoxes. The point where the ecliptic intersects the plane

of the equator.

Vernal Equinox. That through which the sun apparently passes from the south side of

the equator to the north side.

Autumnal Equinox. That through which it returns to the south side.

Solstitial Points, or Solstices. Points in the ecliptic midway between the equi-

noxes.

Perigee. The point where the sun or moon approaches nearest the earth.

Apogee. The point where they are most distant from the earth.

Apsis. The common name for apogee or perigee.

Apsides. The plural of apsis.

Line of the Apsides. A straight line joining the two apsides.

Conjunction. In the same direction as the sun.

Opposition. In an opposite direction from the sun.

Stzygy. The common name for conjunction and opposition.

Quadrature. Points in the moon's orbit midway between the syzygies.

Radius Vector. A straight line drawn from a revolving body to the centre about which

it revolves.

Latitude of a heavenly body. Its distance north or south of the ecliptic.

Longitude of a heavenly body. Its distance eastwardly from the vernal equinox,

measured on the ecliptic.

Right Ascension. The same, measured on the equator.

Declination. The distance of a heavenly body, north or south, from the equator.

Lunation. The time from one new or full moon to another.

Parallax. The apparent change in the place of a heavenly body, when viewed from

different points. It is always equal to the angle which a line connecting the

points of observation would subtend, when viewed from the body.



Note.—It is thought best to omit, in the present edition of this

work, a sequel, or second part, now in manuscript, and to which

there have been several references in the foregoing pages, ex-

plaining the method of calculating most of the lunar motions and

inequalities directly from the laws of elliptical motion and the

principles of gravitation, without the aid of tables. It may ap-

pear hereafter.

Errata.—Page 15th, &c. for elipse read ellipse; page 27, near

the bottom, for syzygyes read syzygies.

Page 32, Fig. 11, the lines NE and EP should be in the same

straight line.

I



ASTRONOMICAL TABLES



LIST OF TABLES

1. Elements of Orbits of Sun and Moon.
2. Mean New Moons in March, &c.

3. Mean Lunations.

4. Mean Motions in hours, minutes and seconds.

5 Days of the Year reckoned from March.

6. Annual Equation of the Moon's Perigee.
7. Annual Equation of the Moon's Node.

8. Equation of the Sun's Centre.

9. Equation of the Moon's Centre.

10. Annual Equation of the Moon's Longitude.
11. Secular Equation of the Moon's Longitude.
12 Variation.

13. Evection.

14. Annual Equation of Variation.

Annual Equation of Evection.

Nodal Equation of Moon's Longitude.
Reduction to the Ecliptic.

18. Lunar or Menstrual Equation of the Sun's Longitude.
19. Lunar Nutation in Longitude.

Sun's Semidiameter and Hourly Motion.

Moon's Semidiameter, Hourly Motion and Equatorial Parallax.

Do. as affected by Evection.

Obliquity of the Ecliptic to the Equator.

Moon's Latitude in Eclipses.

Angle of the visible path of the Moon with the Ecliptic in Eclij

Sun's Declination.

27. First Preliminary Equation.

28. Second Preliminary Equation.

29. Augmentation of the Moon's Semidiameter.

30. To convert minutes into decimals of a degree.

31. To convert seconds into decimals of a degree.

15.

16.

17.

TABLE I.

Elements of Orbits of Sun and Moon.

Mean longitude, Jan. 1, 1801, ....



TABLE II.

Mean New Moon, SfC. in March.



TABLE III.

Mean Lunations.

No.



TABLE NO. IV CONTINUED.

Min-



TABLE VI.

Annual Equation of the Moon's Perigee,

Argument—Sun's Anomaly.
r

Arg.



TABLE VIII.

Equation of the Sun's Centre.

Argument—Sun's Anomaly.

Arg.



TABLE X.

Annual Equation of the Moorts Longitude.

Argument—Sun's Mean Anomaly.

Arg.



TABLE XII

Variation.

Argument-



TABLE XIV.
Evection.

Argument—The Moon's Mean Anomaly diminished by twice the excess
of the Moon's Mean Longitude over the True Longitude of the Sun.

Arg.



TABLE XVI.

Nodal Equation of the Moon's Longitude.

Argument—The Sun's longitude diminished by that of the Moon's Node.

Arg.



TABLE XIX.

Lunar Nutation in Longitude.

Argument—Longitude of the Moon's Ascending Node.

Arg.



TABLE XXI.

Moon's Semi-diameter, Horary Motion and Equatorial Parallax.

Argument—Moon's corrected Anomaly.

Argument.



TABLE XXII.

Moon's Semi-diameter, Hourly Motion, and Equatorial Parallax, as

affected by Evection.

Argument—The same as for Evection, Table 14th.

Arg.



TABLE XXIV.

MoorCs Latitude in Eclipses.

Argument—Moon's Longitude diminished by that of its Node.

Arg.
S.D.

lsoio.oboo

181J0.0873
182 !0.1746

1880.6950

0.2617
0.3486
0.4353
0.5219
0.6085

0.7811

0.8672
0.9529
1.0382
1.1233
1.2082

1.2925

1.3765

Arg. 1°.0

0087
0960
1834
2704
3572
4440
5306
6173
7036
7897
8758
9614
0467
1318
2167
3009
3849

0.0175

.9

0.1048
0.1921
0.2791

0.3659
0.4526
0.5392
0.6258
0.7122
0.7983
0.8844
0.9700
1.0552
1.14031
1.2251 1

1.3093 1

1.3933 1

JB

0262
1135
2008
287810
37460
46130
54780
63430
72080
80690
8930;0

97850
0638 1

1488
2335
3177
4017

.7

0350
1222
2095
,2965

3832
4699
5565
6431
7295
8155
9015
9870
0723
1573
2420
3261
4101

.6

0.0437
0.1310
0.2182
0.3052
0.3919
0.4786
0.5652
0.6517
0.7381
0.8241

0.9101

0.9955
1.0808

1.1658
1.2504

1.3345
1.4185

.5

0524
1397
2269
3139
4005
4873
5739
6604
7467
8327
9187
0041
0893
1743
2588
3428
4269

0.0611
0.1484

0.2356
0.3226
0.4092
0.4960
0.5826
0.6690
0.7553
0.8413
0.9273
1.0126

1.0978
1.1828
1.2672

1.3512
1.4353

4 1 3.

.8

0.0698
0.1572
0.2443
0.3313
0.4180
0.5046
0.5912
0.6778
0.7639
0.8499
0.9358
1.0211

1.1063
1.1913

1.2756

1.3596
1.4437

.2

.9 lo.O Arg.

0.07850
0.1659
0.2530
0.3399
0.4267
0.5133
0.5999
0.6864
0.7725
0.8585
0.9444
1.0296

1.1148
1 1998 I

l!2841 1

1 3680 1

1.4521

N.D. S-A

73 1791359
1746 178 358

2617,177 357
3486176356
4353 175,355
5219! 174 1 354
60851173 353
6950'172 352

7811J171 351

8672170i350
9529169 349

0382|168 348

1233167,347
2082166 346
.2925165 345
.3765 164 344

1-4605 163]343

Arg.

The moon has sometimes a north and sometimes a south latitude, owing to the

obliquity of the plane of its orbit to that of the ecliptic. This Table gives the

latitude for every tenth of a degree of longitude, reckoned 17° either way from

each node. The capital letters at the hea'd of the columns of the argument show

whether the latitude is north or south, and whether it is ascending or descending.

TABLE XXV.

Angle of the visible path of the Moon with the Ecliptic in Eclipses.

Arguments—Horary motion of the Moon from the Sun at the top, and

the Moon's distance from the Node at the right and left.

N. A.

~6°



TABLE XXVI.

The Sun's Declination.

Argument—Sun's Longitude.

/

g

6 2^/?>.?

Arg.



TABLE XXVIII.

2d Preliminary Equation.

Argument—Sun's Anomaly.

OP

+

1

2
3

4
5

6

7

8
9

10

II

12

13

11

152
16

1?

m. s.

44 28
27 31
7 45

43 57
14 49
39 30

57 27
7 59
10 53
6 10

54 4
35 3
9 36

38 44
3 12

24 10
42 39

10°

1Q

m. s

4 29
48 52
3141
1135
47 18

17 35
4140
53 52
8 37
10 45
5 18

52 29
32 45
6 45
35 22
59 26
20 6
38 26

9

go

m. s.

8 56
53 13
35 49
15 20
50 36
20 20
43 45

12
9 10

10 33
422
50 50
30 26
3 51

3157
55 37
16

34 11

HO

:p

13 23
57 36
39 56
19 5

53 49
23
45 44
126
9 39
10 16

3 23
49 7
28 3

40

ii. in.

17
1 1

141
2 22
2 57
3 25
3 47
4 2
4 10
4 9
4 2
3 47
3 25

50

54 2 57
28 29
5146
1153
28 55

7«

2 25
147
1 7
25

h. m.
500 22
56
1

47

35
38
35

4
55
18

1?

36
53
9

54
45
39

60

60

2 26
3
3 28
3 49
4 3
4 10
4 9
4 1

3 45
3 23
2 54
2 21
144
1 3
21

h. m.
26

1 10
52

2 30
3 3
3 30
3 51

4 4

4 10

4 8

3 59

3 43
3 20
2 51

2 17
1 40
59
17

5° 4°

70

h. m
31 10

1 14 49
156 5
2 33 35
3 6 10
3 32 50
3 52 49
4 5 37
4 10 49
4 8 21
3 58 27
3 4123
3 17 51
2 48 30
2 14 14

1 36 10
55 1

12 51

30

9°HO

m. s. ft. in.

35 36 40
19 5 123

12 3
6 2 40
6311
3 37

37

9
35 6

54 26
6 29
10 54
7 41
57 2

39 18
15 9
45 18
10 36
32 12
51 4
8 35

2 rj

3 55
4 7
4 10
4 6
3 55
3 37
3 12
2 42
2 6
128
46

h. in. s.

44 28 35

10O

10

27 31
2 7 45
2 43 57
3 14 49
3 39 30
3 57 27
4 7 59
4 10 53
4 6 10

3 54 4
3 35
3 9 36

2 38 44
2 3 12

124 10

42 39

0_4_0
Oo

When the sun's anomaly is less than 180°, it is before and the moon behind the

mean place, by reason of the Equation of the Centre (Table 8) of the former,

and the Annual Equation of the Longitude (Table 10) of the latter. For both rea-

sons, then, the moon will not overtake the sun so soon as it would otherwise do,

and consequently something must be added to the mean time of New or Full Moon.

The contrary takes place when the anomaly is more than 180° ; and this Table

shows the amount of time to be added or subtracted from these causes.

TABLE XXIX.

Augmentation of the Moon's Semi-diameter.

Argument—Distance of the place (as projected on the disc) from the

earth's centre.

Tables 21 and 22 show us the apparent semi-diameter of the

moon as viewed from the centre of the earth; but the distance

of the moon from any place on the earth's surface at which it

is visible (save when it is in the horizon) is less than from the

centre, which must cause it to subtend a greater angle. This

Table shows the augmentation in the moon's apparent semi-

diameter from this cause.

Arg.



TABLE XXX.
To convert minutes into decimals of a degree.

Argument—The number of minutes.

Arg.




