

NEW AND COMPLETE

SYSTEM

07

ARITHMETIC:

INTENDED FOR THE USE OF

SCHOOLS AND ACADEMIES.

BY CALEB ALEXANDER, A. M. AND Author of "Virgil's Works translated into literal English prose," "The Columbian Dictionary," An English, Latin, and Greek Grammar, "The Young Gentlemen and Ladies? Instructor," and a Spelling Book on an improved plan-late principal of Fairfield Academy, (N. Y.) now Preceptor of Onondaga Academy.

$\rightarrow+$

tignd mdition, revised and corrected.

ALBASY:
PUBLISHED BY E. F. BACKUS, BOOKSELLER,
No. 45, State-Street.
E. EE E. Hosford-Printers.

District of Massachusetts District, to wit:

rL.S. $) B^{E}$ IT REMEMBERED, That on the twentyeighth day of January, in the twenty-sixth year of the Independence of the United States of America, Сaleb Alexander, of the said District, hath deposited in this Office, the Title of a Book, the right whereof he claims as Author, in the words following, to wit:

- "A nezu and complete Syotom of ARTTHMETIC: intended for the use of Schools and Accedemies.

By Caleb Afexander, A. M.
Author of "Virgil's whows, translated literally into proseThe Columbian Dictionary-An English, Latin, and Greek Grammar-The young Gentlemen and Ladies' Instructor-and a Spelling Book on an improved plan-late Principal of Fairfield. Academy, (N. Y.)'now Preceptor of Onondaga Academy."

In conformity to the Act of Congress of the United States, entitled "An Act for the Encouragement of Learning, by securing the copies of Maps, Charts, and Books, to the Authors and Proprietors of such Copies, during the times therein mentioned."

PREFACE.

TO render the following system plain and easy, no pains have been spared. Treatises of this kind have often abounded with abstruse and intricate questions, more puzzling than beneficial to the learner. And some' authors have dwelt too much on trifling questions, which, when understoed, afford no useful knowledge. To shun these extremes, to feed the mind, and form our youth for active life, has been the principal aim, in this work. As the Federal mode of reckoning is well adapted to business, and is rapidly growing into use, particular attention has been given to this mode, in the rules under Deci-mal Fractions. To the patronage of a generous public, this work is humbly dedicated, by

THE AUTHOR.

i5 OC 61

ARITHMETIC.

SECTION I.

Explanation of Characters.

ignifies Addition: as $4+5$ make 9 , Subtraction ; as, 6-4 leaves 2. Multiplication; as, 7×3 makes 21.
Division ; as, $12 \div 6$ quotes 2 .
1'roportion ; as, 4:8: :5: 10. Read thus as 4 is to 8 , so is 5 to 10 .
Equality; as, 4 and $7=11$.
Arithmetic is the art of computing by numbers, and is comprised in the five following rules, Numeration, Addition, Sub.traction, Multiplication, and Division.

NUMERATION

Shows the different value of figures, as they may be differently arranged, and teaches how to read and write, by the forlowing ten characters $0,1,2,3,4,5,6,7,8,9$. The first is calked a cypher; the rest, figures.

The last nine are called significant figures, to distinguish them. from the eypher, which of it self has no value. As it is placed, it may serve to increase or decrease the value of the figure ois figures, with which it is connected. Thus, 4 is but four. If the cypher be placed after it thus, 40 , it becomes forty. When the cypher is placed before any figure, as in decimal arithmetic, it decreases the value of the figure. 'Thus, 4 in decimals, is only the 4 tenths of any thing. But when the cypher is placed before it thus, 04, it becomes 4 hundredths of any rhing.

The nine figures have a certain, or an uncertain, value. When they stand singly, or alone, their value is certain. Thus, 4, 5, 6, are but four, five, and six. If another figure be addled, they are increased, in value, ter times. Thus 4, with 3 added, becomes 4is forty-three : and 5 , with 7 added, becomes 57 fifty-seven. This is called their uncertain value.

Every figure, at the left hand, increases the value tenfold, in ploportion to its distance from the right hand firgure, or the place of units. Thus, 6 is six; 66 are sixty and six ; 666 are six hundred, sixty, aid six ; 6666 are six' thousand, six hus-

ARITEIEETIG.

dred, sixty, and six; 66666 are sixty-six thousand, nix hundred; sixty, and six.
os Quadrillions.

- Hundreds of thousands of trillions,
C Tens of thousands of trillions.
to Thousands of trillions,
∞ Hundreds of trillions,
\checkmark Tens of trillions,
or Trillions,
- Hundreds of thousands of billionge.
er Tens of thousands of billions,
ct Thousands of billions,
© . Hundreds of billions,
∞ Tens of billions,
e Billions,
o Hundreas of thougands of millions,
- Tens of thousands of millions,
© Thousands of millions,
or Hundreds of millions,
a Tens of millions,
co Millions,
- Mundreds of thousands,
∞ Tens of thousands,
or Thousands,
a Hundreds,
\checkmark Tens,
- Units,

1
To exercise the pupil, let him write in fgures, the following numbers:

Seventy-seven ; eighty-nine; ninety-four; one hundred and six ; nine thousand, four hundred and twenty-three; four mil. Jions, six hundred, and forty-six thousand, seven hundred, and Ewenty-five; two billions; one million, seven hundred, eightyseven thousand, four hundred, and thirty-two; six trilifions, three thousand, four husdred, and fifty-seven billions, nine lundred, and sixty-five millions, and twenty-nine.

To facilitate enumeration, accomptants often diatinguisk their Esures thus:

$$
423,678,943,278,742,684,987,867,423 .
$$

Let the fallowing number be written in words:

9	748	648	紋
74	6329	7329	786
239;	87243	98654	2849
847	98476	841265	60]87
882	347632	3649872	207438

Ádidition.

ADIITION

IS the putting together of two or more numbers, so as their total $\begin{array}{r}\text { ralue may be known by one sum. }\end{array}$

SIMPLE ADDITION

Is the putting together of several whole numbers of one denomination.
In placing your numbers, observe to set units exactly under units, tens under tens, hundreds under hundreds, \&c. and then observe the following

Rüle.

Having drawn a line under the numbers to be added, begin with the row of units ; add the figures together; consider how many tens there are in the row ; set down the excess, if any, directly under the place of units, and for every ten carry one to the next row or place of tens. Proceed in the same manner with each row ; and your work, having set down the whole sum of the last row, will be done.

- Examples.

To prove Addition, begin at the top, in the place of units, and compute the figures downwards, in the same manner you did upwards; if your work be right, the aggregate sum will be the wame as the former:

4367423	4236742
2467836	34682736
4238204	4967426
62:37420	8423678
3746348	4628748

IS the txkng of a less number from a greater, to show the wifference: And, like addition, it is simple and compound.

SIMPLE SUBTRACTION

Is the finding of the difference of two numbers of the like kind, by taking the less from the greater:

SUBTRACTIOA.

Rule.
Place the less number under the greater, and observe is set, exactly, units under uniti, tens under tens, hundreds umder hundreds, \&cc. Draw a line underneath; ahd, beginning at the right hand, or place of unite, take the lower line from the upper; or the less number from the greater. If the figure, in the lower line, in the place of units, be greater than the one in the upper line, you must borrow ten from the place of tens, and add them to the figure in the upper line; then take the figure in the lower line from this sum ; set down the excess, above ten, in the place of units, and carry one, for the ten you borrowed, to the row of figures, in the place of tenis, in the lower line. In this manner, proceed carefully with every row, and your work will be complete.

To prove Subtraction, you may add the remainder to the less number : If your work be right, the aggregate will be like the sreater nuraber.

Examples.

From	467	893	746238	9236842784
Take	324	742	635127	8125731673
Rem. 143				
				r
From	276	924	427842	7234263487
Take	187	867	346974	6349297649

 How lang since ?

1801	1801	1801
1776 Am. ${ }^{\text {In }}$,	1666 Fire Lon.	1588 Sp. In.

25 Answer. 135 Answer 213 Anstre.

MULTIPLICATION.

Or all the rules in Arithmetic, Multiplication is the most usefll. By two given numbers; it teaches us to find out a third, which ohall contain, or increase; the greater as many times al there are units in the less.

By this rule, many sums, in addition, may be wrought, in the most compendious manner.

By this rule, greater denominations are brought into smaller : as pounds into shillings ; shillings into pence; and pence into futhings.

Kmowing the length and breadth of a plain surface, we may learn, by this rule, its superficial contents; or square measure.

And by knowing the value of one thing, or the wages of one person, we are taught, by this rule, the value : of many such things, or the wages of many such persons.

The number to be multiplied, is called the multiplicand; that by which the number is multiplied is called the multiplier; which is, commonly, the less number : The product is the result of the work, or the answer. The multiplicand and multiplier, taken together, are called the factors.

SIMPLE MULTIPLICATION,

Means the moltiplying of any two numbers together which are of one denomination.

Before the learner proceeds in this useful rule, he ought to commit perfectly to his memory, the following table.

Multiplication Table.

times	2 is	4	4	times	7 i	is 28		times	$\dot{8}$ is	56
\times	8	6	4		8	38	7		9	63
	4	8	4		9	36	7		10	70
	5	10	4		10	40.	7		11.	77
	6	12	4		11	44	7		12	84
	7	14	4		12	48	8	x	8	64
	8	16	5	\times	5	25	8		9	72
	9	18	5		6	30	8		10	80
	10	20	5		7	35	8		11	88
\times	3	9	5		8	40	8		12	96
	4	12	5		9	「45	9	x	9	81
	5	15	5		10	50	9		10	90
-	6 .	18	5		11	55	9		. 11	99
	7	21	5		12	60	9		12	108
	8	24	6	x	6.	36	10	\times	10	100
	9.	27	0		7	42	10		11	110
	10	30	6		8	48	10		19	120
	11	33	6		9	54	11		11	121
	12	36	6		10	60	11		12	132
\times	4	16	6		11	66	12	\times	12	144
	5	-20	6		12	72				
	0	24	7	x	7	49				

To prove multiplication, division is the most sure and expe: ditious mode. Or you may invert your factore, and if the product be like the former, the work is right. As the pupil is supposed not to have learned division, he may prove multiplication, by the excess of nines.

Rule.

Reject all the nines out of the multiplicand, multiplier, and product, and place the excess of eaeh directly opposite their respective terms. You must then multiply the excess of nimes in the multiplicand, by the excess of nines in the multiplier : reject all the nines from this.last product, and if the excese be equal to the excess in the first product, the work is right.

Case 1.
When the multiplier does not exceed 12.
Rule.
Having placed units under units, and tens under tens, proceed, in the work, as the table directs, being careful to carry one for every ten, to the place of tens, or to the next superios row, as in simple addition.

Exampies.

Case 2.

When the multiplier is more than 12.

Rule.

Multiply separately each figure, in the multiplicand, by each figure in the multiplier, beginning with the place of units, and placing the first figure of each product directly under its multiplier ; then add the several products together, in the same order, as they stand, and their sum will be the total product.

Examples.

Case 3.
When either the multiplicand, or multiplier, or both, bere cyphers.at the right hand.

Rule.

Set the first figure of the multiplier under the first figure of the multiplicand. And then, not regarding the cyphers, proceed as in Case 1. or 2.28 the operation may require. Lastly, to the product annex all the cyphers in the multiplierand multiplicand.

Examples.

ARITHMETIC.

Case 4.
To multiply by $10,100,1000,10000$, \&ce.
Rule.
Add as many cyphers to your multiplicand, as there are in the multiplier; and your work will be done.

Examples.

46	7423			
10	100	96234	$\mathbf{1 0 0 0}$	$\mathbf{8 4 2 3 6 7}$
460	742300			
	-			

Case 5.

When cyphers are intermixed with the multiplier.

Rule.

Omit to multiply by the cyphers, and place the first figure of each product directly under the figure, by which you multiply. Then add the products together, and their sum will be the total product.

Examples.

We shall now teach how to apply this rule, in the real busisess of tife.

What are the superficina eontents, in feet, of a garden, 80 feet in length, and 70 in breadich
'BO length.
70 breadth.

5600 Ansiver.

2. If the wages of one man, for a gear, be 122 dollary, What, are the wages of 24 men ? 112 dollars. 24 men.

2688 datlars, the answer.
3. If one yard of broadcloth cost 5 dollargs, What is the cost of 63 yards, at the same rate?

63 yards.
5 dollars.
315 dollars, the answer.
4. If one dozen of eggs cost 10 cents, what is the cost of 13 dozen : Answer, 130 cents, or 1 dollar and 30 cents.
5. If one pound of flax cost 17 cents, What is the cost of 245 pounds? Answer, 4165 cents, or 41 dollars and 65 cents.
6. If one gallon of rum cost 133 cents, What is the cost of 6 gallons ! Anawer, 7 dollare and 98 cents.
7. If 1 give 6 cents a mile for the hive of a horse, What will a journey of 146 miles cost me! Answer, 876 cents, or 8 dollars and 76 cents.
9. If 1 give 14 cents a mile for the hire of a borse and chaise, What will a journey of 237 miles cost me it Answef, 3318 centes, or 33 dollars and 18 conts.
9. If one pound of butter cost 20 oente, What is the cost of a firkin of butter containing 86 pounds, Answer, 1780 cents, or 17 dollars and 20 cents.
10. If one pound of livē greese feathers cost 75 centsi, What is the cost of feathers for a bed, containing 44 pounds? An8 wer, 3300 cents, or 33 dollars.
11. If one piece of nankeen cost 116 cents, What is the cost of 4 dozen pieces ? Answer, 5568 cents, or 55 dollary and 68 cents.

DIVISION.

T0 know how many times one number is contrinedin anotho. er, is the use of Division. It teaches also, to separate any number, or quantity, into any number of parts assigned; and; shows how, from any two numbere given. you may find a third, which shall consist of so many units, as the one of those given numbers is contained in the other.
In Division there are four principal parts to be understood. The dizidend, or number to be divided; the divisor, or numbier by whoh you divide; the guotizm, or answer to the question, which slows: huw many times the diztor is contained in the dividend; and the renainder, which is always less than the divisor; and of the same denomination with the dividend. The remainder is ancertain: for there is sometimes a remaindery and sometiroes none.
Di;ision is cither aimple or compound: Simple, when the, divisor consists of but one figure; and the dividend, of two, or more. Compound, when the divisor consists of two, ar mere, figures.
To prove Division, you may multiply together the quotient. and divisor, taking heed to add the remainder, if any there be: If the product be like the dividend, your work is right; if otherwise, it is wrong.

Casr I. and Rulb,

Inquire, first, how many times you can have your diviscrin .the first figure of the dividend: When known, place it in.the quotient ; then mulkiply the divisor by this quotient figure, and Ret the product under the left hand figtare, or figures, of the dividend, as the case may be ; then subtract this product from the figure or figures, of the dividend, under which it is placed, and. bring down the next figure of the dividend. to the right haid of the remainder; then proceed as in the first instance. If the figure, brought down, be less than the divisor, you must place a cypher in the quotient, and bring down another figure to make a second dividend. You must proceed carefully, in this manner; with all the figures of the dividend, till youe work is fipished.

If you cannot have your divisor in the frot figure of the dividen gou mues take two, three, or four figures, ae: the cave may requize.
4) $9236($
3) $6969($
4)862468(
6)7436(
8) 74236 ?
9) 723642 (

Multiplying the quotient by the divisor, is a sure way of proving division, as already mentioned. But long division, may be proved by addition.

1 Proof by Addition. Rule.

Add together the remainder and all the bottom lines, and if their sum be like the dividend, the work is right.
$\stackrel{1}{23)} 44(1$.
26) $742(28$
3.
37) $8236(222$
N. B. The asterisms show the bottom lines and the remaine der, which are to be added together, as proof.

Examples.
23)42674(46)2367423(72)936742367(324(6324674.

Examples, in which only the remainder, and the proof by the excess of nines are set down.
4) $63426742($
6) $72314267($
5) $4236742($
3) $14674236($
——

\qquad

14) $6234674($
18) $67423674($
28) 62347742 C
54) $62342674($

ARITHMETIC.

Case 2.
When the dipisor does not exceed 12, the operation is called short division.

Rule.

Inquire how often you can have the divisar, in the first figure, or figures, of the dividend. Then multiply, in your mind, the divisor by the quotient figure, and subtract the product from a like number of figures, at the left hand of your dividend. The unit, or units, which remain, if there be any, must be reckoned as so many tens, which you must consider as standing at the left hand of the next figure of the dividend, and to be reckoned with it ; then inquire how often you can have your divisor in these two figures. If nothing remain, you must inquire how often you can have the divisor in the next figure, and thus proceed, till the work is done.

Examples.

Divisor 2)6482648 dividend. 3241324 quotient.

2

6482648 proof.

6)7423	4) 8637	8) 9367	3)874
10) 9423	$11) 6345$	$12) 9436$	6)7423

5) 942367423674
6) 842364936423

Case 3.

In dividing by $110,120,1100$, or 12000 , \&c. the learner has nothing to do, but to cut off, or separate the cyphers, in the divisor, 110,120 , \&c. and cutting bfi, or separating a like num. ber of figures from the right hand of the dividend.

> Examples.

$110) 9433678$	$1100) 634278$	$1100) 2367423$
$120) 637426$	$120) 7863478$	$130) 9023674$
$140) 23674923$	$150) 6342786$	$150) 72367425$
$1600) 9423674237$	$1700) 823674236$	$18000) 236742634$
$12000) 2367426378$	$19000) 634267894$	$19000) 7236423655$
$11) 72646206$	$12) 76677240$	$11) 47627000$

By fully thatarstanding the ibpove expmaples, you time expeditiously divisle, by $110,120,1100$, or 1200, \&cc. For, fin the oneration you have nothing to do, except catting off; or sepuratitg the cyphers from 11, and 12, (when the'se numbers happen to We the diviasire) and neparating. or cutting off, the fike number of fignres, or cyphers, from the right hand of your dividend. And then preceed, on in the above excmples.

Dificor 11)0j3456(7
314

Case 4.

To divide by $10,100,1000,10000,100000$, ke.
Rule.
Cut off, or saparate, as many figures or cyphers, from the sigtrt hand of your diridend as you have cyphers in the divisor. and your wors is done; for the remgining figures of your dividend will be the quotient, and those cut off, the remainder.

| $10) 123456789$ | $100) 123456789$ | $1000) 123456789$ |
| ---: | ---: | ---: | ---: |
| $10000) 123456789$ | $100000) 123456789$ | $1000000) 123456789$ |
| $1000) 462346$ | $1000) 72364236$ | $10000) 7236742$ |
| $10000) 634267423$ | $100000) 36423674$ | $1000000) 6236742643$ |

To exercise the pupil, we ohold sidd some proniscuous eram ples and questions, under addition, subtraction, multiplicationt, and division,

1. Add together 48, 602, 7046, 47823, 400786, and 74. Ans. 516373.

2 What is the number, being added to 2497:7928079, that - will prodace 46324644236 \& Ans. 21345881357 .
3. John owes Peter 6842 dollare, and has paid. 5986 , what cum is still due to Peter : Ans. 356.
4. The xmount due from A. B. C. and:D. to TP. is 6940% dollears ; A. thte paid 279; B.:8784, C. 742, and D. 46. What is still due to F ? Ans. 58576 dols.
5. Six men in partnership, have, in stock; 74628 dollars, of Which M. put in 436; L. 792; S. 4623; N. 6742; and Q. 2763; what did H. put in ! Ans. 59272.
6. How many pence are there in one dollat, a half dollai, : quarter of a dollar, a shilling, and six pence, estimating a del. at 8 shilings ? Ans. 186 pence.
7. A ressel, comtaining 422 pieces of nankeen: 456 chentu of Hywon tea: 397 pieces muzlin; 4276 yards silk; 674 yardib cassimer, and 7496 yards of chintzes, was taken by 86 memp. and equally divided among them. How much of each kind foll to each man's share 1 Ars. 4 pieces nankeen, and 78 remain. ing; 5 chests of Hyson, and 26 remaining; 4 pieces mualing. aad 53 remaining ; 49 yards of silk, and 62 remaining; 7 yards. cassimer, and 72 remaining; 87 yards chintzes, and 54 remaining.
8. The undivided remaindems of the above cargo were vold for 5276 dollars. How many dollars fell to each man's share F Ans: 61 dollars, 34 cents, 8 mill a_{3}. and $\frac{78}{5}$ of a mill
9. Socrates, the famous Grecian philosopher, was pat to death 400 years before the birth of Cbrist.-General Weshington died 1799 after the birth of Christ. What is the differences of time? And how old would Socrates be, if he had lived to this year 1806? 1 Ans. 2199, 2 Ans. 2206. The last answermakes no allowance for Socrates' age.
10. The world was created 4004 years before the birth of: Christ. Gen. Washington was born 1732 years after the birti. of Christ. How old was the world when. Washington waid born ? Ans. 5736.

COMPOUND ADDITION.

Compound Addition is the adding of several numbers fogether, having divers denominations:

Rule.

- 1 . Place the numbers of a similar denomination' untier each. other, and separate each denomination, by a comma. The. Jowest denomination should, ever, be in the right hand column:-

2. Begin with the rigit hand columin first: additup, and oiee . how many of the next denomination are contained in the firgt column, carry the ones, or the sum to the second culumn, get the overplus directly under the first oolumn. Them begin withtry the second colutnn, and proceed in the above manmerg-illl ther. operation be finished.

Op Monex.*

4. Farthings (qrs) make one penny d. $\quad \frac{1}{4} d=1 q r$ 12 Pence one shilling s. 20 Shillings i one pound l $\frac{x}{2} d=2$ qis. む. $l .=208 .=240 \mathrm{~d} .=96 \mathrm{crs}$.

Pence Table.

d.		s.	d.	s.		d.	s.		l.	8.
20	=	1	8	2	$=$	24	30	$=$	1	10
30	$=$	2	6	3	=	36	40	$=$	2	0
40	=	3	4	4	\ldots	48	50	$=$	2	10
50	=	4	2	5	=	60	60	$=$	3	0
60	$=$	5	0	6	$=$	72	70	$=$	3	10
70	$=$	5	10	7	-x	84	80	$=$	4	0
80	$=$	6	8	8	=	96	90	$=$	4	10
90	=	7	6	9	=	108	100	$=$	5	0
100	$=$	8	4.	10	$=$	120	110	$=$	5	10
110	$=$	9	2	11	=	132	120	=	6	0
120	=	10	0	12		144	130	$=$	6	10

Examplesa

l.	s.	d.	qr.	l., s.	ct,	$q r$,	l..	s.	c.	
42,	16,	8,	2	567,	14,	6,	3	37,	14,	$8 \frac{1}{4}$
68,	17,	7,	3	48,	17,	4,	2	26,	15,	$9 \frac{7}{2}$
76,	9,	10,	2	467,	13,	6,	3	48,	19,	7
48,	12,	8,	1	384,	14,	9,	2	68,	13,	$10 \frac{3}{4}$
67,	13,	11,	2	146,	17,	10,	1	46,	17,	9
304,	10,	10,	2							

l.	s.	d..	$q r$	l.	s.	d,	$q r$.	l.	s.	d.	$q r$
93,	14,	6,	2	146,	12,	7,	2	4126,	13,	7,	2
74,	10,	7,	3	793,	14,	5,	3	6729,	17,	4,	3
87,	16,	9,	2	296,	15,	6,	2	8274,	16,	7,	2
46,	12,	11,	1	472,	18,	4,	1	7423,	18,	9,	1
79,	18,	10,	3	629,	13,	7,	2	2346,	14,	6,	3

* Sterling money ruas, formerly, of the same value in all the Colo. nies of North-America. By reason, however, of a paper currency, a doliar was reckoned, in
NeveEngland, Virginia and Kentucǩy, - 68°
Pennsylvania, New-Jersey, Delazvare and Maryland, 78. 6ıl: New-York and North-Carolind,
- - 8 .

South-Carolina and Georgia, 4s. ed.
In all the Colonies, one pound was the integer,

AHITHMETIC.

L.	s.	d.	qr.	l.	s.	d.	qr.	l.	s.	d.	qr.
89723,	14,	7,	2	7823,	14,	2,	3	123,	14,	7,	3
63742,	19,	6,	2	4267,	18,	9,	2	763,	17,	9,	2
27469,	17,	2,	3	3462,	14,	8,	3	406,	10,	10,	0
42674,	1,	6,	3	4236,	17,	7,	2	802,	4,	4,	3
93672,	18,	7,	1	6342,	18,	9,	2	960,	00,	4,	2
40620,	15,	11,	3	7464,	11,	10,	3	874,	16,	0,	2
67082,	15,	6,	2	9467,	10,	11,	2	786,	14,	7,	3
37492,	10	3,	1	7402,	13,	4,	2	947,	16,	6,	1

Troy Weight.*
24. Grains ($g r$.) make 1 penny weight, pwt.

20 Penny Weights - 1 ounce, oz.
12 Ounces - 1 pound, lb.

Examples.

lb. oz. pwt. gr, lb. oz. pwt. gr. lb. oz. pwt. gr.
$24, \quad 8, \quad 18, \quad 20 \quad 74,10,13,20 \quad 55, \quad 6, \quad 14,18$
$28, \quad 9, \quad 17, \quad 22 \quad 84, \quad 9, \quad 16,22.84, \quad 7, \quad 16,19$
$69, \quad 7, \quad 16, \quad 23 \quad 49,6, \quad 17,18 \quad 37,10,17,18$
$74, \quad 6, \quad 19, \quad 18 \quad 68, \quad 8, \quad 13, \quad 17 \quad 28, \quad 6, \quad 14, \quad 23$

Avoindupois Welght. \dagger

Examples.

T.	cwt.	qr.	lb.	oz.	dr.	lb.	oz,	dr,
78,	18,	2,	22,	13,	14	17,	14,	15
28,	19,	3,	26,	12,	15	14,	12,	13
76,	18,	1,	37,	14,	12	16,	15,	15
87,	17,	2,	22,	15,	13		20,	10,

* By this weight are weighed all jervels, sold, silver, plate, peanl, medicines, and liquors.
\dagger All coarse and diossy goode are weighed by this weight.

Apotile mand wivght?

- 20 Graim (gr:) make 1 scruple, θ.
3 Scruples
H- 1 dram,
8 Drams
- 1 ounce,
12 Dunces
-1 pound
"examples.

Cloth Mrasure.

4 Nails, (na.) make 1 quarter,	qr.	
4 Quarters	1 yard,	
5 Quarters	$=-1$ ell English,	E. E. .
3 Quarters	$=-1$ ell Flemish,	E. Fi.
6 Quarters	1 ell French,	E. Fr.

Examples.

yd.	qr.	na.	E.E.	qr.	na.	E. F1.	qr.	na,
468,	3,	2	786,	4,	3	78,	2,	2
384,	2,	3	643,	3,	3	86,	2,	3
776,	3,	2	486,	4,	2	87,	1,	2
846,	2,	3	764,	3,	1	96,	2,	3

Dey Measure.

- Grain, Sath, sic. are menoured by striksed mouewre: but Pears, Apples, Pesatees, Twrnips, Efc, are heateod ti 1 havedsome rounding meature.

Exampless.

bu.	pk.	qt.	pt.
384,	2,	6,	1
476,	3,	$\cdot 7$,	1
286,	2,	6,	1
185,	3,	4,	1

Liquid Méastare*

Measure of Tume.

60 seconds (sec.) make 1 minute, - min.
60 minutes.. 1, hour, 24 hours 1 day, 7 days 1 week 4 weeks . 1 month, 13 , months, or 365 days and 6 hours. $\dagger\}$

* Brandy, Spinits, Perry, Cider, Vinegar, Mead, Zonoy, Oil, and Mill, are measured by this measure -
\dagger According to the best computation, a solar year consist of 365 days, 5 hours, 48 minutes, and 55 secionds. But by the calendar, if is divided in the following manner.
- No more days than 30, hath the month of Septenber,

The same may be said of Jine, iffril, Nowember:
The rest of.the monthe have just 30 and one,
Except that short month; Pébruary, alone,
Which to tiself claimeth just 8 and a score,
But in evexy leap year woe give it one more,

ExAMPLES.

y.	mon.	w.	d.	h.	min.	see.
78,	11,	2,	4,	20,	$28 ;$	40
67,	10,	2,	3,	$17 ;$	46,	25.
84,	9,	3,	6,	22,	40,	56,
69	7,	2,	5,	18,	$56 ;$	39

Long Mrasure.

Examples.

m . fur. rd . $\mathbf{y d}$. ft. in. b.c. m . fur. rd. yd. ft. in. b.e:

Solid, or Cubic Measurz.

1728 inches make 1 foot,
40 feet of timber make 1 ton, or load, 128 feet, or 8 feet long, $\} 1$ cord of wood
ft.
\mathbf{T}
\mathbf{C}

Exampleg.

C.	ft,	in.
678,	112,	160
776,	114,	1.560
489,	76,	860
376,	118,	1187

- 66 Feet, or 4 radk, make a Gemer's chain.

60 Geometrical miles make a ilegree.
6 Feet make one fathom-4 inches one hasa,

Land, or Square Measure.

\cdot

2.	r.	rd.		9.	π	${ }^{\mathbf{r d}}$.	ft.	in.
789,	3,	28		78,	2.	20,	212,	120
678,	2,	36		69,	3,	36,	182,	116
437,	3,	. 29	+	78,	2,	30,	196,	134
267,	2,	38		67,	3,	38,	107,	140

Examples.

COMPOUND SUBTRACTION

Teacmes how to find the difference, or inequality, of any two sums.pf divers denominations.

Subtraction of Money.

Rule.

Pace thone numbers under each other which are of the same denomination; the less being placed below the greater, begin with the least denomination, and if it exceed that in the upper, you must borrow as many units as make one of the next greater; and then proseed as you were directed in simple subtraction, remembering always to add one'to the next superior denomination towards the left band, for that which you borrowed. Proof, same as simple subtraction.

Ib.	oz.	Pwt.	gr.	..		16.	oz.	pwt.
36,	4,	13,	14					
27,	9,	10,	16		87,	6,	12,	18

- Avoradupors Werartiz

Apotagarims' Whigit.

Cloth Measure.

qr.	E.E. qr.	E.Fl qr. na
8, 2, 2 49 3. 8	$\begin{array}{llll}61, & 2, & 1 \\ 46, & 3\end{array}$	98, 1,
49, 3. 8	46, 3, 3	19, 2,

Liquid Measure.

T.	hhd. gal. qr. pt.	T.	hhd. gral. qr.	pt.			
867,	2,	48,	2,	1	67,	1,	20,
1,	0						
848,	3,	59,	3,	1	69,	2,	38,

Mensume or Time.

Lone Meastae.

m. fur. rd. yd. ft.	in. bc.	fur.	rd.	yd. ft.				
764,	4,	15,	4,	1,	8,	1	28,	20,
3,	1							
387,	6,	24,	5,	2,	10,	2	19,	38,
4,	2							

COMPOUND MULTIPLICATION

Ts the maltiplying of divers denominations by one ${ }_{2}$ or more integerg, or by a multiplier of divers denominationg.

Case. 1.
When the multiplier does not exoced 12 : or, when the price is multiplied by:the quantity.
Multiply reparately each domomination in the multiplicand,
beginning at the lowest denomination and carry to the next auprior denomination, as in Compound Addition.

Examples.

In this example, 1 say, 6 times 6 make 36 pennies, which are 38. Set down 0 ; in the place of pence and carry 3. to the place of shillings. Then say, 6 times 12 make 72, and 3, that were carried, make 75s. or 3l. 158. Set down 15 in the place of shilllings, and carry 3 to the pounds; and then say, -6 times 7 are 42 , and 3 , that were carried, make $45 l$.

lb. oz. pwt. gr. cwt. qr. lb. oz. dr.

bu. pk. qt. pt. bu. pk. qt. pt.
hin. pk qt. pt. 286, 2, 6, $\frac{1}{7}$ (79, 3, 5, 1
T. bids. gal. qt. pt. hhd. gal ${ }^{\circ}$ qt. pt. gil. u. r. rd.

Ans. 15s. Od .

What is the amount of 7 lbs . of tea, at 4 s .6 dt . per lb ?
What is the amount of 8 days labor, at 5 s . $9 \mathrm{~d} \frac{1}{2}$, per day ?
What is the amount of 5 cwt . of sugar, at 31 . 14e. 6 d . per cwt . If. 1 yard of.eloth cost 14 s . 6 d, what will 9 yards cont?

What is thie weight of 4 hhds. of sugar, each weighing $\mathbf{6 c w t}$. 2qr. 201b. ?
What is the weight of 6 silver spoons, each weighing toz. 12 pwt .14 gr .

How many acres in 6 lots; each containing 75a. 3r. 28rd. ?
What is the amount of 15 firkins of butter, each containing 68 lb . at 1s. $4 d$. per lb. ?

What is the amount of 255 ihds. of fum, each containing. 11.5 gals . at 7s. 9 d . $3 q \mathrm{r}$. per gal.?

A husbandman wishing to stock bis farm, bought 4 horses at $45 \frac{1}{2}$ dols: each; 7 cows at $15 \frac{\mathrm{l}}{} \mathrm{dols}$. each ; 35 sheep at one dol. $\frac{7}{2}$ each; 12 yearlings at $4 \frac{3}{4}$. dols. each; 4 colts at 194. dols. each ; and 16 swine at $6 \frac{x}{2} d o l s$. each. What is the amount of the whole stock; and the separate amount of each ?

What is the amount of 56 cases of $g i n$, each case containing 8 bottles, at $68: 11 \mathrm{~d} .3 q \mathrm{r}$. per bottle.?

What is the amount of 642 bushels of wheat, at 1 dol . and a quarter per bushel ?

What is the weight of 25 loads of hay, each weighing 16 cwt 3.qr. 251b. 7oz. ?

What is the weight of 125 fat,oxen, each ox wighing 895 wt . 14 oz:?

What is the weight of 376 fat sheep, each quarter weighing 2216. 130z.?

Whab is the amount of 649 pieces.of, callico; each pieeè containing 50 yds. at $3 \mathrm{~s}, 7 \mathrm{~d} .3$ 3r. per yd. 1

What is the amount of 1249 pieces of tape, each piece cone twining 75yds: at 1d. 3qr. per yd.
What is the amoant of 96 bales of cotton, each bate containing 2351b: at 3s. 7d. 3qr. per 1b.
What is the amount of 84 hihd . of sugar, each bhd. containing the wt. of 3 barrels, and each barrer eontaining 2631 b . at 14 3gr. per 1b. 1

What is the amount of 94 hhds, of molesses, each fihd. con: tedning 127 gals, at 5s. 94.3 3r: per gal. ?

What is the amount of 44 barrels of linseed oil, each basrel. containing 31 gale, at a dol, and $\frac{1}{}$ quarter per galit

What is the cost of 89 dozen penknives, each knife costing 1 s . 8d. 2qr.1.

What is the amount of 25 days labor, at $4 s .6 d .2 q r$. per day?
What is the amount of $749 y d s$. of broadcloth at 16.12 s .6 d .3 qm per yd. ?

If 1 gal. of brandy cost 7 s . $4 d .2 q r$. what is the cost-of 347 hh ds: each containing 127 gals: 1

.Case 2.

V When the multiplier is any number, produced by multiplying together any two numbers found in the table of multiplication.

Role.
Multiply the giveri" price by two such numbers as, when multiplied together, will produce the given quantity; as, suppose it to be 42 ; by the pultiplication table you will find that 6 times. 7 make 42.-Multiply the given price by the 6 or 7 , first, and that product by the other : The last product will be the answer.

What is the amount of 42 bushels of corn, ats
4s. 6d. per bushel?
6

$$
6 \times 7=42-\frac{1,7}{1,7,0}
$$

太.9, 9, 0 Ans.
What is the amount of 72 lbs . of flax, at 1 s. $2 \frac{1}{2} d$. per lb ?
What is the amount of 24 bushels of potatoes, at $2 s .6 t$. perbushel? Ans. 31.

What is the amount of 96 acres of land, at 41.16 s .8 d . per acre ? Ania. 464.

What is the amount of 144 sheep, at $6 s .8 \frac{\pi}{2} L$ per hoad ? Ane. 4826 s.

What is the amount of 49 yds . of cioth, at 18s. 4d. per yard \& Anj, 44l. 18s: ©

What is the amount of 81 days labor, at $58.6 d .2 q x$. per day ?
What is the amount of 54 gals. of spirits, at 8a. 7 d . 2 qr . per gal.:

What is the amount of 72 bushels of wheat at 8 . $4 d .2 q r$. pes bushel f

What is the amount of 24 horses at 164 14s. $6 d$. per horse ?:
What is the amount of 63 lb . of butter, at 18. 4d. per lb. ?
What is the mmount of 56 casem of knives, at 10s. 9 d .3 qr . perp case!

What is the amount of 45 yds. of chintz, at 4s. 9 d . 3 qg . per gd. 2
What is. the amount of 791b, 70z. at.13s. pex lb. ?

Case 3.

When the multiplier cannot be produced by multiplying ty. gether any two, or more numbers, found in the Table.

Rule.

Multiply by the numbers that come the nearest to the multiplier, and then multiply the multiplicand by that number, which makes up the defioiency ;-add the two products together, and you will have your answer.

Examples.

19,	7,	0
		6
116,	2,	0
6,	9,	0
price of 36		

6.122, I1, 0 Ans.

At 4s. $\dot{6}$ d. per bushel, what will 74 bushels of corn cost ? Ass. 16l. 13s. Od.
At 9c. 6 d . $\overline{\text { grr. }}$ per bushel, what is the amount of 61 bushele of wheat?
. At:Gd. 3qr. per dozen, what is the amount of 65 dozen of quills ?

At 5 s. 6 d . per day what is the amount of 73 days. labor ?
At $88.6 d$. $2 q r$. per gal. what is the cost of 43 gals. of brandy : At 12s. 7d. 2qr. per yd. what is the amount of 84 yds of silk?
To multiply by fractional parts, observe the following rmex.

Rule

Multiply the price by the numerator, or upper figure of the fration, and divide the product, by the denominator, or lower figure of the fraction.
M. B. If the upper figure be 1 only, you may divide the sam by the lower figare, and you will have the answer.

COMPOVMD: MUSTIPAICATIOX.

Examplezs.

What is the amount of $\frac{7}{8}$ of a yd. of callico, at 2s. 6d pror yar t

$$
\begin{array}{r}
2,6 \\
7 \\
\hline 8 y 17, \quad 6
\end{array}
$$

Sane" 2s. 2d. 1qt. .
What is $\frac{8}{4}$ of 358 : Or the amount of $\frac{3}{4}$ of a barrel of rice, at 35s. per barrel?

$$
35
$$

3

$$
\text { 4) } 105
$$

26s. 3d.
What is the amount of $\frac{1}{2}$ of yd . of sattin, at 11.72 .6 d . per yard !

At 38. 4d. 2qr. per yd. what is the amount of $\frac{p}{8}$ of 1 yd . of durant?

At 98. 4d. per bushel, what is the amount of $\frac{3}{5}$ of a bushel of wheat ?

At 6 s. $4 d$. per gal. what is the price of $\frac{2}{4}$ of a gal. of brandy ?
At 14. 7 d . 3 gr . per yd . what is the price of $\frac{4}{3}$ of a yd. of eloth ?

At 28. 9d. 2qr. per yd. what is the amount of $\frac{6}{8}$ of a jard of broarccloth i

At 1l. 4s. $6 d$. per yard,* what will 99 yards come to T Ainit 1216. 5e. 6d.

Case 4.

When the multiplicand and multiplier are of unlike denomip nations, but of the same kind, as pounds, shillings, pence, -and farthings, multiplied by pounds, shillings, pence and farthings.

To work examples under this case, obserye the following directions:

1. Pounds multiplied by poundz, produce pounds.
2. Pounds multiplied by shillings, every 20 is one pound, the reat ahillings.
3. Younds multiplied by pence, every 12 is anie shilling, the rest pence.
4. Shillings multiplied by shillinge, every 20 is ane shilling; every 5 is 3 pence, and each oneis 2 farthings, and four tenths of a farthing.
5. Shillings multiplied by pence, every 5 is a farthing, and exch one 2 tenth parts of a farthing.
6. Pence multiplied by pence, every 60 is a farthing and erery 6, one tenth part.

Examples.


```
                                l. 8. d. \(\quad\) l \({ }^{\text {d. }}\) d.
            3, 5, \(6 \times 2,12,9\)
                    The Work.
                \(\begin{array}{lrr}\text { K... } & 8 . & \alpha \\ 3, & 5, & 6 \\ 2, & 12, & 9\end{array}\)
                    2,
                    6
                    3 3
                                    \(30 \%\)
                                    5.3; 4
                                    9
```

 \(6.8,12,9,0,8\).
 Case 5.
 When a shilling, or a foot, sic. are the integer.
To work examples under this case, observe the following directions :

1. Shillings multiplied by shillings, produce shillinga.
2. Shillings ty pence, every 12 is a ghilling, and the reat pence.
3. Shillings by farthings, each one is a farthing',
4. Pence by pence, every 12 is a penny, and each 3 a farthing.
5. Pence by farthings, every 12 is a farthing, and every 3 is a quarter of a farthing.
6. Farthings by farthings, each 12 is a quarter of a farthing.

Examples.
8. \boldsymbol{a}.
$8,4 \times 6,3$ c. d
\% $2 . d \times d$

The last example is thus wrought :

1. 2×2 make 4 ; which gecording to ditec:tion 1 , are 4 shillings.
2. 2×6 make 12 , and 2×6 make 12, whose sum is 24 ; which, by direction $2 ;$ is $/ 2$ shillings.
3. 6×6 make 36 ; which-by direction 4, 1 make 3 pence.

 $842,14,9,2 \times 637,18,4,3$.

As a complete knowledge of this case is of great use in the mensuration of boards, glass, plasterings, \&c. I shall state a few questions for the exercise of the learner. He will please to observe, that every foot is divided into 12 inches, and every inch

- into 4 quarters: and of course he can-work according to the directions, as if the statement were shillingss, pence, and farthings:

1. What are the contents of a piece of.wainscot 8 feet, 6 inches, and 2 quarters long, and 2 feet, 9 inches and 3 quarters broad?

2. What are the contents of a board 16 feet, 10 inches, and 3 quarters long; 2 feet, 7 inches and 2 quarters broad?
3. What are the contents of a plastered wall 34 feet, 8 inches, and 1 quarter long, and 25 feet, 10 inches, and 2 quarters broad?

What are the contents of a board 18 feet, 9 inches, 2 quarters long, and 1 foot, 11 inches and 3 quartere wide?

Whatiare the contents of a floor 16 feet, 9 inches, 3 quarters long, and 15 feet, 7 inches, and 2 -quarters wide !

What are the contents of the front of a house, 44 feet, 8 inchos, 2 quarters long; and 18 feet, 10 inches, 1 quarter high ? - What are the contents of a wainscot 22 feet. 11 inckes, 3 quarters long, and 9 feet, 7 inches, 2 quarters high ?

What are the contents of 2 garden, 227% feet, 8 inches 1 quarter long', and 196 feet, 5 inches, and 3 quarters broad?

COMPOUND DIVISION.

Is the dividing of numbers of different denominations.

Case 1.

When different denominations are divided, by any number aet exceeding 12.

Rule.

Divide the highest denomination first. The remainder, if any, mast be brought to tie next: lower denomination; and, af. ter adding it to the next lower denomination, divide the sum by your divisor: and proceed thus, with all the denominations, till the work is finished.

Examples.

If 5 bushels of corn cost $\underset{1}{\text { f. }}, \stackrel{8}{2}, \frac{d}{8}, \frac{\text { gr. }}{2 ;}$ what is that per bushel!

Ans. As. Gd. Agr:

T. cwt. qr. lb. oz, dr T. cwt, qr. lb. oz. dr. 7)78, 18, 3, 27, 15, 14.-9)47; 7, 2, 24, 11, 10

CASEs 2.

When the divisor is the product of two, or move numbers multiplied together, as they are found in the table.

Ruse.

Divide, first, by one of chose numbers, and the quotient by the other. The last quotient will be the answer.-

Examples.

6) $12, \quad 16 \quad 7, \quad 2$
6)2, 2, 9,1
6.0, 7, 1, $2 \frac{1}{6}$ Ans.

lb. oz. pwt. gr.
In this example, as 6 times
6 are 36 ,. so 6 and 6 are the. two divisors.
96) $5246, \quad$ 19, $\quad 8, \quad 2$.
54)69, 7, 16, 23
lb. oz. pwt. gr.
T. cwt. qr. lb. oz. dr.
63)84, 7, 16, 19
15) $84,17,2,3,14,13$
T. cwt. qr. lb, oz. gt. 81) $94,18,13,5,12 ; .10$

$$
\begin{array}{rllll}
\text { tb. } & \mathbf{3}, & 3 \cdot & 3 \cdot & \mathrm{gr} . \\
49) 67, & 9, & 5, & 1, & 18
\end{array}
$$

$\begin{array}{rll}\text { but. } & \text { pk. } & \text { qt. pt. } \\ \text { 48) } 384, & 2, & 6,1\end{array}$

bus,	pk. qt. pt.
132,674,	3,
5	

$$
\begin{array}{ccc}
\text { at. } & \text { r. } & \text { rd. } \\
120) 6723, & 3, & 37
\end{array}
$$

r. rd.
108)579, 2, 25
y. m. w. d. h. min. sec. . y. d. h. min 99,23, 7, 2, 5, 18, 56, 34 96) $146,234,23,29$

Multiplication and division mutually prove each other.

Questions resulting from the pr ceding Relent:

1. What is the sum of $47+29+76+34+98$?
2. What is the sum of 24789-19867 ?
3. There is an orchard, in which grow 40 trees, and each tree hath ten limbs, and each limb has 20 branches, and on each branch there are 30 apples; how many apples are there in all !

Sits. 240,000 apples.
4. 456 men take a prize worth $\$ 1569$ what must each receive.
5. What is the sum of $24 l .158 .6 d .2 q r .+98 k .18 \mathrm{~s} .7 \mathrm{~d} .+36 \mathrm{l}$.

14s. Gd. 1 qr. 1 1001. 17s.?
6. What is the product of $48.7 \mathrm{~d} .3 \mathrm{qr} . \times 6$?
7. What is the quotient of $9 l$. Cs $8 d .3 q r:-81$
8. A feast for 36 men cost $19 l .17 \mathrm{~s}$. 9 . $3 q \mathrm{r}$. what must each man pay?
9. 18 men took a prize worth 4632 . 18s. $6 d$ what is each : : man's share ?
10. What are the contents of a floor 18 feet, 10 inches and 3 quarters long, and 12 feet 8 inches and 2 quarters broad ?
11. What is the product of $48.6 \mathrm{ch} \times 2 \mathrm{~s} .8 \mathrm{di}$.?

14. $\times 346,14,7,3$ by 48
lb. oz. pwt. gre.
15. 163 men took a prize worth 723 . 16s. 9 nd of which the captain had four shares; the first lieutenant, three; the second lieutenant, two; what was the share of each officer, and each private?
16. A tract of land, containing 14378a. Br. 37rd. 9ft. 137in is to be equally divided, among 236 men, whine, is each man's share ?
17. A West India cargo of 69T.' 2 hhd. $5 \times \mathrm{gal}$. SqL. Rpt. of : f molasses; is to be equally divided among 27 men, what is each. ni. man's share !

害EDUCTION.

39.

$$
\div 84 \dot{6}, 2,3
$$

T., cwt. థif. lb: ©́z. dr. $+76,18,32$ 25, 14, 13 by 37

REDUCTION.

B× Reduction we change money, measures, weights, \&c, out. of one denomination into another, and yet retaining the same value. Of this there are two kinds, viz-jieduction Descending, and Reduction Ascending.'

1. Reduction Descending is performed by multiplication.
2. Reduction Ascending is performed by division.

REDUCTION DESCENDING.

Rule.

Multiply the highest denomination, by the number of the next less which makes one of that highest ; be careful to add to your product the figures of your nextless denomination, and proceeg. in this manner till you have finished the work.

Of Monpy.

1. In $86 l .148 .6 d .2 q r$. How many farthings ?

$$
\begin{array}{cccc}
\mathcal{E} & 8 . & d . & \underline{r} . \\
86, & 14, & 6, & 2
\end{array}
$$

$\times 20=8$ hillings in apound.
1734_=shillings.
$\times 12=$ pence in a shilling ,
.20814=lence.
$\times \quad 4=$ farthings in a penny.
83258 farthings; the Answer.
In multiplying by 20 , I added the $148.1 m \times 12,1$ added the $6 a x$ In $\times 4$, I added $2 q r$. Which must always be done in similar cases.

To prove questions in this rule, change the order of them. The foregoing question will become-In. 83258 farthings, How many pounds?
4) 83258
12)20814d, $2 q \mathrm{r}$.
2)0)173(4s. $6 d$.
. $2 n t$. 861. 14r. 6d. 2qr. proof.
2. In 397 l. 16s. 7d. 3qr. How many farthings! Sus. 381919.
3. In 156 dollars at 6 s. How naty farthings ! . Ans 44928.

1. In 461.12 s .8 d . How many half pence! Rus. 22384.
2. In 48 guineas at 28s. How many farthings? . Ano. 6451\%.
3. In 68!. How many groats, or fourpences? Ans. 4080.
4. In 1796 lb . Troy Weight, how many grains ?
5. In 4678 oz. Troy Weight, how many grains?
6. In 2347 T. 15 cwz . 1qr. 181b. 9oz. 14drs. How many drams ?
7. Anaximander, the Grecian philosopher, lived about 600 years prior to the birth of Christ, How many seconds since, to the year 1806 ?
8. Gen. Washington died, December 14, 1799, How many seconds since, to December 14, 1806 ?
9. American Independence was declared, July 4,.1776, How many minutes since, to July 4, 1806, and hours, and days, and weeks, and months, and jears ?
10. In 7296 miles, How-many inches ?
11. In 3476 acres, How many inches, feet, rods, and roods ?
12. In a pile of wood 57 feet long and 14 feet high, How many cords ?
13. In 86 hh ds. brandy, each containing 146 gals. How many g:lls ?

REDUCTION ASCENDING.

By Reduction Ascending, less denominations are brought into higher.

Rule.

First, divide the sum by that number, which it takes to make one in the next higher denomination: secondly, divide the greatest, which it takes in that denomination, to make one in the next higher; and proceed in the same manner, through all the denominations, till the work be done.

Examples:

n. 1. In 86435 farthings, How many pence, shillings, and pounds ?
Fartlings in a penny 4)86455
Pence in a shilling, . 12)21608d. 3 qr.
Shillings in a poond 2)0) $180(0 \mathrm{~s} .8 \mathrm{~d}$.
6.90, Os, 8d, 3qi. . Ans.:
 many farthings ?

${ }_{90}^{20} 0,8,8$.

$\begin{array}{r}1800 \\ -12 \\ \hline 21608\end{array}$

Ans. 86435, proof of the first question.
2. In 68160 farthings, How many pounds ? Ans. 71l.
3. In 7864 pence, How many pounds ? Ans. 32l. 15ss. 4 d .
4. In 8674 half pence, How many pounds ?. Ans. 18 l . 1 s .5 d .
5. In 78640 farthings, How many dollars at $6 s$. each ? Ans. 273 D. and 4.d.
6. In 3452 sixpences, How mary pounds ! Aks. 86l. ©r.
7. In 9763l. How many farthinge ?
8. In 52371 b . Troy Weight, How many grains ?
9. 'In 7365T. Avoirdupeis Weight, How many drams'
10. In 632lb. Apothecaries' Weight, How many grains ?
11. In 22F. Liquid Measure, How many gills?
12. In 360 degrees, How many barley corns ?

REDUCTION DESCENDING AND ASCENDING.
This is performed by Multiplication and Division.

1. In 276l. 12s. How many pence?

20

5532
12
66384 Ans
2. In 66384 pence, How many pounds ?
12)66384.

2) $0553(2$
$276 l .12 s . ~ A n e . ~$

3. In 391 . How many farthings and dollars at 6 s.?

4. In 6%. 1s. How many threepences, fourpences and strpences ? Ans. 484 threepences, 363 fourpences, 248 sixpenicer.
5. In 12180 threepences, How many shillings, pence, and fourpences ? Ans. 3045 s . 3654 Dd ; 9135 fortipences.
6. In 144 guineas at 28s. How many pounds ? Ans. 2011. 12s.
7. In 78 dollars how many ninepences ? Ano 624.
8. In 841 . How many sixpences and crowns, at-6s. 8 d. ?
.Ins. 2523 crozme ; 33640 eixpences.
9. In 73920 farthings, How many pounds and guineas at 28 s. each ? Mns. 77l.; 55 grineas.
10. In 28l. How many sixpences, fivepences, fourpences, threepences, and twopences, and of each an equal number? $6 d .+5 d+4 d .+3 d+2 d=20{ }^{2}$ and $284=6720 d+20=336$ of gach sorts sins.

Troy Weight.

lb. . oz. pwt. gr.

1. In 86, 10, 19 21, How many grains ? $\times 12=0 u n c e s$ in a pound.

1042
$\times 20=$ penny weighte in ar ounce.
20859
$\times 24=$ magraine in a penny weight.
83437
41720
500637 =egrains; the anower.
lb. oz. pwt.
2. In 78, 5, 18, How many penny weights ? Ane 18838 ptrits
3. In 500637 grains, How many poundsi Ana 861 b .10 oz . 19pwt. 21.gr.
4. In 18838 pwt . How many pounds : Ans: 7818, 5ox. 18patt.

Avompurots Whigrt.

cwt. qr. 1b. oz.
4. In $36,2,14,13$ How many ounces?

4
146
28
1172
293
Proof.
16)65645

4102
16
24615
4103
65645 oz . Ans.
2. In 3 tons of hay, How many pounds: Ana 672013.
cwł qr. lb.
3. In 7, 3, 10 , How many drams ? Ans. 2247 F 8 B (r.
4. In 67201 bs . How many tons ? Ans. 3 tons.
5. In 224768 drams, How many cwt .? Ane. 7 cwt . 3 qr , 101b:
6. In 5hhds. of sugar, each weighing 9 c wt. 12lb. How many pourds? Ans. 5100lb.

Apothecaries' ;Wbight.

tb. 3. 3. $9 . \mathrm{gr}$.

1. In $8,6,4,1,12$. How many grains?

49232 Ans.

据
2. In 12, 8, 3, How many drams ? Ans. 1219dr.
3. In 49232 grains, How many pouncit : $\mathcal{R n s} .8 \mathrm{lb} .63 .43^{\prime}$ 17. 12gr.
4. In 73140 grains, How many pounds ? Ans, 12lb. 83 . 37 .

Cloth Meastre.

yds. qr. na.

1. In 47, 3, 2, How many nails ?
4,
4191

766 Ans.

2. In 766 nails, How many yards ? Ans. 47 yds. Sqr. 2 na .
S. In 748 ells French, How many ells English, ells Flemish, yards, quarters, and nails ? .Ins. 897E.E. 3qr.-1496E.FL.-1122ds.-4488qrs.-17952na:
3. In 4 pieces of cloth, each 14 yards, How many nails ? -2ne. 896na.

Dry Measure.

bu. pk. qt. pt.

1. In 36, 2, 61 How many pints? Ans. 2349 pts.
2. In 2349 pints, How many bushels ? Ans. 366u. 2pk, 6qt. 1pt.

Liquid Measuré.

1. In 6048 gills, How many hogsheads ? Ans. Thhds.
2. In 67892 pints, How many barrels? Ans. 269bls. 13gal:
3. If a person drink 3 quarts of cider a day, How much would that amount to in a year ?. $2 n 8.8 \mathrm{bls} .21 \mathrm{gal}, 3 \mathrm{gts}$.
4. If a per son be desirous to draw off 4bls. of cider into bottles, containing pints, quarts, and two quarts, and of eath an equal number, How many must he have? Ans. 144 of each sort.

Time.

1. In 46 m. w. d. h. min. sec.

Ans. 1361818409 seconds.
2. In 1361818409 seconds, How many years.

Ans. 46 y .10 m .3 w .4 d . $18 \mathrm{~h}, 53 \mathrm{~m}$: 29 sec .
3. Since Christ, have elapsed 1799 years; in which how many bours, minutes, and seconds, allowing the year to contain-365 days, and 6 bours ? Ans. $15770034 \mathrm{~h} .946202040 \mathrm{~min} .56772122400^{\circ}$ sec.

Long Meastrz:

1. In 5 miles, How many barley corns i Int 950400 b.c. .
2. In 570240 barley coras, How many miles ? Ans, 3 miles.
3. The circumference of the earth is 360 degrees; and earh
degree $6 S \frac{\pi}{2}$ miles; How many barley corns will reach round it ? Ans. $4755 \% 1600$ b.c.
4. How many more times will the forvard wheels of a coach turn round, than the hind wheels, in running from Mendon to Boston, which is 37 miles, supposing the circumference of the hind wheels is $15 \frac{1}{2}$ feet, and the forward wheels 14 feet? Ans. 1351.

Solid, or Cubic Measure.

1. In 6 cords of wood; How many solid inches? $6 \times 128 \times 1728$. $=1327104 \mathrm{in}$. Ans.
2. In 3 solid feet, How many solid inches ? $3 \times 3 \times 3 \times 1728=$ 46656in. Ans.
3. How many feet in a stick of timber 35 feet long, and 2 feet square ? $2 \times 2 \times 35=140$ feet, Ans.
Here observe, if you multiply the length, breadth, and depth, of any regular solid, together, tit will give the contents.

If two dimensions, (either length, breadth, oi depth,) are multiplied in feet, and the other in inches, and you divide by 12, the quotient will be feet, if one is multiplied in feet, and the other two in inches, divide by 144, and the quotient will be feet.
4. How many feet in a stick of timber 30 feet long, 2 feet wide, and 13 inches thick ! $30 \times 2 \times 13=780 \div 12=65$ feet, Ans.
5. If 'a stick of timber be 28 feet long, 8 inches wide, and 6 inches thick; how many feet ? $28 \times 8 \times 6=1.3 .14 \div 144=9 \frac{1}{3}$ feet, Ans.

Land, or Square Measere.

a. r. rd.

1. In 24, 2, 36, Hew many rods ?

4

98

40

3956 Ans.

2. If a room be 14 feet long, and 13 feet wide, how many feet of boards will it take to lay the floor? $14 \times 13=182$ feet, fns.
3. If a field be 60 rods long, and 45 rods wide, How many acres does it contain ? $60 \times 45=2700 \div 160=16$ acres, 140 rodsa Ans.
4. If a house be 36 feet long, and the rafters 28 feet; How many shingles will it take to cover it, allowing each shingle to be 4 inches wide, and each course to be laid out 5 inches? Ins. 14515 .

RULE OF THREE.

For its usefulness, in , Rrilhmetic and other parts of Mathemat ical learaing, this rule is sometimes, called the Goiden Rule. And $2 s$ the terms, of which it is composed, bear a certain proportion to each other, it has obtained the name of the Rule of Proportion. In this Ru'e, three telmes are always given, to find a fourth. The fotreth term bears sucha proportion to the third; us the second doth to the first.

Of this Propertzon there are two kinds; one is called direct; and the other indirect, or reverce.

If the third term be greater than the first, and require the fourth term to be gireater than the sesond; or, if the third be lese than the first, and require the fourth term to be less than the second, the question is in Direct Propartion.

But if the third term be greater than the first, and require the fourth to be liss than the second; or, if the third be less than the first, and require the fourth to be greater than the second, the question belongs to Reverse Proportion.

To state the question, or to planes the thre terms properly, is the clief difficulty attending the Rule of Three: To remove which, observe the following rales:

Ruze 1.

Place that number, that asks th : question, for your third number: which generally has such words as these before if' '度ow far? What cost? What will! Hozt cnany? How much? \&c. That number which is of the same n.ane, on quality, of your third number, place for your first number. That number, which is of the same name, or quality, of the fourth term; or answer required, place for your second number, or term.
2. Reduce the first and third numbers to the lowest denom-ination, mentioned. in either of the two numbers; and reduce jour second number to its lowest denomination; that is, if they consist of pounds, shillings, and pence, \&c. you must reduce them to pence, because pence is the lowest denomination mentioner.
3. In Direct Proportion, having stated your question and reduced the numbers, multiply your second and third numbers together for a dividend, divide their product by the first number, and the quotient will be the fourth number, or answer to the question.
\therefore Note, The quatient, or answer, anul remainder, are atwaye of the saime kind, or denominution, the second member wous reduced to

ROVE OF THEE.

RULE OF THREE DIRECT.

Examples.

-1 . If 5 cwt . of sugar cost 200 . what will 18 cwt cost ?
Ans. 722. cwt. $\mathrm{Cr}_{2}{ }_{18}$ cwt. Stated 5 : 20 : : 18

According to Rule 1, I find that 18 cwt . asks the question which 1 place in the third place; and 5 cwt. being of the same name, I place in the first; and 20l. being of the name of answer required, I place in the second place; and proceeding; according to Rule 3 , find the answer to be $72 l$.
2. If $72 l$. buy 18 cwt of sugar, What will 20 h buy ? Ans. Scot.

$$
\underset{G}{\mathcal{G} .} \text { cwt. K. }
$$

$$
A s \mathcal{T V}_{2}: 18: 20
$$

3. If 12 yards of cloth cost $6 l$. What will 36 yards cost ?

$$
\begin{aligned}
& \text { Ane. 18. }
\end{aligned}
$$

4. If 12 gallons of brandy cost $4 l$. What will 134 gallons cost ?

Ans. 44l. 13s. Ad.

$$
\text { As } 12: 4:=134
$$

5. If $6 l .10$ s. 6 d . will buy 29 bushels of wheat, How many bushels will 181. 15s. gd. buy? Ans. 83bu. 2pks.
6. If 6 yards of holland cost 31. - 12 s Gd. What will 64 yards and 1 quarter cost ? Ans. 381. 16s. 4d. Agr.
7. How many yards of velvet, at 138. Ad. a yard, will 1361. 12s. buy ? Ans. 204yds. $3 q \mathrm{rrs} .2 \frac{8}{5} \mathrm{na}$.
8. At 10 d . 2 qr. a lb . How much sugar can you buy for 22% 118. Gd. ! Ans. 4cwt. 2 qr. 121 b .
9. How many days, work can you hire for gl. 49. at $3 \mathrm{~s} .6 d$. per day! Ane. 24 days.
10. If a man expend 18. 6 d . a day, What does it amount to for a year! Ais. 274. Ts. Wd:
11. The salary, of the President of the United States, is 7.500l. : supposing his daily expence is 201 . What has he remanning at the year's end? Ans. 200l:
12. What must you give for 28 acres, 34 rods of land, at 42: 10e. an ac acre? Ans. 126 l ISs. $1 \frac{1}{2} d$.
13. Bought 6 pieces of calico, each piece contained 28 yards, for which I gave 29l. 158 . What is chat per yard $:$ Ans. 3s. $6 \frac{1}{2} d$.
14. A drover buys 64 fat oxen, at 153 . for an ax; the experice of driving to market, is $6 l$. for butchering, $10 l$. of salt, $8 l$. of barrels and storage, 15l. and he would gain 2002. by the bargain : What will bethe price of 24 of said oxen, after they are killed and barreled? Ans. 449․ 12s. 0 C .
15. If 1 dozen of eggs cost 9 d . What will 150 eggs cöst ? Ans. $98.4 \frac{1}{2} d$.
16. John Bankrupt owes Peter Commerce, 296l. 17e. and compounds at 7e $6 d$. in the pound. How much must Peter receive for his debt? Ans. 1111. 6s. 4d. 2qr.
17. What is the worth of three fifths of a ressel, which is Vall!ed at 1160l.? Ans 696L
18. If $16: l$ gain $6 l$. interest- in a year, What will 17l. 10\%. gain in the same time ? Ans. 1l. 1s.
19. A marketer gave $26 l$ 1.js. $4 d$. for a load of fowls: For turkies he gave 36 . for geese $288 d$. for ducks 28 . 4d. for heine is \hat{c}. and for partudgex 1s. 2d. and he'had of each sort a like numiser: I demand the numih.r. Ans. 50 of each sort.
20. If 1.38 be the value of $1 l$. of deferred stock, What is the value of 3 bul. 108 ? Ans. 2346 6s. 6d:
21. If 1 give 1 s . 4d. for keeping a cow a week, What must I give for a year? Ans. 3t. 9s 4d.
22. If three week's diet cost 11 s . $2 d$. What will be the cost of a years' ? \quad Ans. 9l. 15s.
23. A etak man has an estate of 242l. ICs. How much may he spend a day, and lay up 60l. at the jears' end ?

Ans.' 10s. per day.
24 AS I was walking on the forest ground,
Up sturis a hare, betore my cid grey hound;
My dog, be:ing light of fiot, did fairly sun,
Unto lier 15 risds, just 21.
Now, the distance. that she started up before;
W'as four score and sixteen rods, juet, and no more :
Now this l'd have you unto me declare,
How far he ran before he caught the hare.
Ans. 336 rode.
25. If a tax be laid on a town, of 2732 . 38. $9 s^{\circ}$ of which the polls pay 36l. and the inventory of all the estates in the town amounts to 12,6502 . What is it on the pound ?

Ans. 4. a on the pound.
26. If a tax be granted of $4 \frac{x}{2} d$ on the pound, What must A. pay, whose estate is valued at 360 l . 1Cs. ? Aas. $6 \mathrm{l} .15 \mathrm{~s} .2 \frac{1}{4} \mathrm{~d}$.
27. What will a barrel of rum come to at 1 s 8 d . a quart?

Ans. 10k 10\%.
28. What is the price of 11 b . of beef, if $112 \mathrm{lbs} \operatorname{cost} 18 \mathrm{~s} .8(1$? ?

Ins. $2 d$.
29. If 891 gals. of gin cost $1762.68 .10 d .2 q r$. What is the cost of 1 gal.?
30. A merehant, failing in trade, owes $2119 l .17 \mathrm{~s} .6 d$ he possesses an interest of 1324 l . 18s. 5 d . 1qr. How much will his creditors receive on the pound ? Ans 12 s .6 d ,
31. What is the price of 1 lb . of butter, when 4 c wt. 1 qr. 19 lb . cust 18l. 11s. 3 d.$\}$ Ans. 9 d .

32: A merchant gave at the rate of 6 s. 9 d , per gal for 377 gals brandy; what did the whole coat $\}^{\prime}$ Ans. 127l.4s. 9 d .
33. If t ton of beeswax cost $22 l .8 \mathrm{c}$. what will. 203 T . 9 cmt . 3 qr . Blb. cust ? Ane. 45581. 3s.
34. What is the interest of 2364° dols. per year, at 7 per cent ?

Ans 16 dols. 48 cents.
35. What is the worth of 1 qr of sugar if a merchant give185l. 4s. 11d. for 47 cwt . 3 qrs .? Ans. 19s. 1 d .
36. A frigate, having 150 hands, is furnished with 18000 lb . of bread, of which each man eats 4 lb . per week, How long will

37. A carpenter gives 4icents per foot for boards, What is the cost of 98 feet ? 1 ns. 3 d . 92 c .
38. What is the weight of a silver tankard, costing 10l. 12s. at the rate of 5 s .4 d per ounce? Ans. 39oz. 15pwt.
39. What sum of money will gain 35l. 15s. at 10 per cent. ? Ans, 157l. 10s.
40 What is the height of a tree, casting a shadow of 37 feet : and a perpendicular staff of 3 feet, casting a shadow of 2 ft 7 in .3 Ans. 30 ft 6 in. 2 bar. corn; $\frac{28}{3}$.

RULE OF THREJ REVERSE:

In the Rule of Three Direct, the product of the first and fourth numbers is equ:l \because the $p l$ uduct of the second and third.

But in the Rule of Three Reverse, the product of tie third and fourth numbers is equal to the product of the first and second.

The method of stating any question, in thi Rule of Three Rewerse, is the same with that in the Rule of Three Eirect.

All questions, in which less requires mdre, or more requires leas, belong to this rule:

Rule.

Having prepared and stated your question, as you would in the Rule of Three Direct, multiply the first and second terms together, divide the product by the third. and the quotient will be the answer, of the same name, or denomination, with the second term.

Examples.

1. If 40 men do a piece of work in 50 days, In how many days can 80 mef do the same?

80)2000(25 days, the Answer. 160

In this question the second term is days; and of course the fourth term, or quatient, or answer, is days.

It is also evident that more requires less. For 80 are morethan
40: and it is plain, that 80 men cap do the work in a less time than 40 men. And consequently, this truth is evident, that, in the Rule of Three Recerse, the fourth term, or answer, bears the same proportion to the second, as the third does to the first Or as 50 is twice as great as 25 , so 80 is twice as great as 40 .
2. If 4 men plane 250 boards, in 6 days, How many men will pl:ne them in 2 days ?
3. If 4 men can make 80 rods of wall in 20° days, How many men can make the same number, in 10 days ? Ane. 8.
4. If 2 board be 9 inches in width, How much in length will make a square foot?

Ans. 16 inches.
5. How many yards of paper, 3 quariers wide, will paper a room that is 24 yards round, and 4 yards high ? Sne. 128 yards. 6. If a traveller go 160 miles in 7 days, when the day is 16 hours long. In how many days will he go the same, when the day is 13 hours long ?
7. How many yards of shalloon, 3 quarters wide, will line. yards of cloth 8 quarters wide ? $\Delta n x .24$ yardes.
8. If 1001. gain $5 l$ interest in 12 montha, What principal: will gain the same interest in 5 montbs? ? ms .240 L
9. If A. lends B. 66 dollars for a year; to balance this loan, How much ought B. to lend A. for 7 calender months?. Ane. $113 \frac{1}{7}$ döle.
10. A regiment of soldiers, consisting of 1000 men, are to have new coats, and each coat is to contain 2 yards and 1 quarter of cloth that is 5 quarters wide: How much shalloon, that it 3 quarters wide, will line them ? Ans. 3750 yarde.
11. What number of dollars will galn, in 1 m . the sum, that 127 dols. will gain in a year, at 6 per cent ! 1 me . 1524. 12. If 16 boarders drink a barrel of strong beer in 24 deyg, how long will it last if 8 more boarders be added ! Ans. 16 dayn 13. If 200 carpenters can finish 2 building in 24 daye, how mony are sufficient to finish the same, in 6 daye? Ane. 800
14. A garrison, containing 800 soldiers, has provision for 60 days only; how many must be sent off, that the provision inay last 100 days ?

4ne. 320.
15. If A. lend B. 200 dollars for 360 days, how long ought B. to lend A, 2000 doilars, to compensater the Eindinear ?

Ane. 36 daye.
16. Required the length of a board 1 foot wide, to make 3 feet 17. If the carriage of 300 wt . 450 miles, cost 44 . 48. how far may 1800 be carried for the same noney!. Ans. 75 milet.

FEDERAL MONEY AND DECIMAL FRACTIOṄS.

Fadrrar Moneyis, simply, Decimal Arithmetic. It is added, subtracted, multiplied and divided in the same manner ; and proceeds, like decimals, in a tenfold proportion, as may be ob. served in the following Tables:

Table of Decimal Fractions:

-a Thousands.
${ }^{4}$ Hundreds.
to Tens.
To Units.
\sim Tenth parts.
ω Hundredth parts.

- Theusandth parts.
or X Thousandih parts.
of Thousandth parts.

Table of Fedgrai Money.

a. Thousands of dollars.

- Hundreds of dollars.
© Tens of dollars.
- Dollars.
s Dimes, or tenths of a dollar.
* Cents, or hundredibs of a dollar.
- Mills, or thousandths of a dollar.
i Tentl parts of a mill.
o Hundredth parts of a mill.
In both these tables, it may be observed, that the numbers in. crease to the left band of the comma, or separatrix, and decrease to the right hand, in a ten-fold proportion : that is, the figure at the left hand of the comma is ten times greater than the figure at the right hand of the comma; and the second figure at the right lhand is ten times less than the first : and so of the rest.
Those figures at the right hand of the comma, are called decimals, or parts of a dollar; those at the left hand are called whole numbers, or dollars; when.there are figures on both sides of the comma, they are called mixed numbers, or dollars and cents

A Decimal Fraction is an unit, supposed to be divided into ten equal parts, and each of those parts into ten other equiparts ; and so on, by decimal division, without end.
In Decimal Fractions the denominator is not expressed, but it is understood, which is always an unit, with as many eyphers annexed as there are places of decimals; 2s, ,5,25,006 which are read $\frac{5}{10}$ five tenihs, (that is, five tenths of an unit, or dollar, which is five dimes;) $\frac{25}{100}$ twenty five hundredths, (of a dollars or 25 cents;) $\frac{6}{1000}$ six thousandths, (of a dollar, or six mills.)

ARITAMETIC.

A dollar is the Unit Money; dimes, cents, and mills, are valued according to their place from the place of the dollar. One dime is the one tenth part of a dollair ; one cent is the one tenth part of a dime, "and one mill is the one terth part of a cent.

These several denominations, being placed in one line, without any comma, or separatrix, between them, thus, 46378, may be read as whole numbers, and called so many mills; that is', 46 thousand, 3 hundred and 78 mills. If you separate them by commas, thus, $46,3,7,8$, they must be read, 46 dollars, 3 dimes, 7 cents, and 8 mills, which have the same value as the above number of mills.

Such is the nature of Federal Money, that you may pead it differently, and get retain the same value; accordingly as you may separate it differently by commas. Thus you may call $53.96,53$ dollare and 95 cents. If you point the same thus, $5,3,9,6$, you must call them 5 eagles, 3 dollars, 9 dimes and 6 cents, which have the same value as the above.
In the following work, the comina will be used only to separate the dollars from the cents and mills, which is the customary way for keeping book accounts, and is the least liable to error.
A cypher at ike right hand of a figure, after the comma, alters not the value of the figure immediately.preceding it ; thus, 54,70 are $54 \frac{7}{10}$ or fify-four dollars and 70 cents. But a cypher at the left hand of decimals, or cents, diminishes the value of the figure; thus, 54,07 are only fifty-four dollars and seven cents. Of which the reason is plain, as the cypher removes the 7 one place of tens farther from the units or dollars.

ADDITION OF FEDERAL MONEY AND DECIMALS.

Rule 1.
Whether your numbers be mixed, or only decimals, place them according to their value ; that is, place units under unitd; in whole humbers, and tenths under tenths, in decimals.
2. Acd the whole together, as in simple addition, and poink off so many places for decimals, as are equal to the greatent number of places in any one line of tie sum.

TISDETAT MONET.

Eximples.

1. Add-46d. 26c. 4 m. $+30 d .06 c .7 \mathrm{~m} .+4 d .09 c .+120 d$ 70c. $3 \mathrm{~m} .+20 \mathrm{c} .4 \mathrm{~m}$. into one sum.
d. e.m.

46,264
30,067*
4,09
120,703
,204
201,328 the sum.

d. c. m.	d. c.m.	a. c. m.
78,284	416,064	78,283
987,06	23,507	7,034
40,705	784,37	84,706
7,123	127,406	7,26
876,95	346,75	50,84
106,703	56,98	67,909
2096,825		

5. What is the sum of 70d. 70c. +6 d. 06 c . $5 \mathrm{~mm} .+48 \mathrm{~d} .86 \mathrm{c}$. $+74 \mathrm{c} .5 \mathrm{~m} .+73 \mathrm{~d} .63 \mathrm{c}$. . . Ane. 200 doll.

SUBTRACTION OF FEDERAL MONEY AND. DECIMALS.

Rule.
Place units under units, and tenths under tenths, and proceed as in Simple Subtraction. Separate the decimals from the whole numbers, by a comma, as in Addition.

Examples.
d. c.m. d. c. m.

Berrowed 745,283
Paid 403,095
Due 342,188
3. Borrowed 170 d . 06 c . paid 98 d .20 G .4 m . What remains due? d. c. m. 170,06 -98,204

Dre 71,856
-If the number of cents be under 10, you mure alowys ghate a

4. Borrowed 800 d . 56 c . paid at one time 76d. 44c. at another time 186 d .28 c .5 m at arother time, 408 d 06 c .5 mm . What is now. due?
$\underset{800,56}{\text { d. } . ~} \mathrm{~m}$.
Borrowed 800,56

5. Borrowed 560 d . 28 c . paid at one time 48 d . 54 c .5 m , at, another time 150 d .84 c . at another time 128 d .74 cc .5 m . What remains due! sme. 232d. 15 c .

MULTIPLICATION OF FEDERAL MONEY AND DECIMALS.

Rule 1.

Place the number according to their value, and multiply them as whole numbers.
2. Separate as many figures, to the right hand for decimals, in your product, as there are decimals in the multiplier and maltiplieand counted together.
3. If decimal places be wanting, annex cyphers to the left hand to supply the deficiency.

Examples.

Note. When any number is multiplied by a fraction, the prom duci.is atways fess than the multiplicand, in the same proportion at che multiplying fraction is less than 1 , or an unit. That is; dollars, or units, multiplied by dollars, produce dollars ; dollats multiplied by dimes, or tenths, producerdimes, or tenths : and dimes, or tentha, multiplied by timen produce cents or. hundred ths : dimes, multiplied by oente, or hurdredths, produce milis, or thousandths ; cents multiplied by cents, produce teante of mills, of teinghongadiths, Rety

The same is observable in poutals; shillings and pence: shil--lings, multiplied by pence, prodere twentieths of á penny; \&c.

d. c. ทn.

d. c.

64,345
52,94
28,604
43,62
Prod. 1840,524380
d. c. m.

2309,2428 Prod.
d. $\bar{c} . m$.

76,435
84,067
6,073
,784

What will 36 bushels of corn come. to at , $56 c$. per bushel? Ans. \$20 16c.
What will 3 dozen of lemons come to at, $03 c$. 5 mm . per lemon t Ans: \$1 26c.
What will 40 lbs . flax come to at 12 c .5 m . per lb. ?
Ans. 5 dollars.
What will 12 days labor amount to at , 66 c . 4 m . per day?
Ans. $\$ 7$ 98e. 8 m .
What is the amount of 327 bushels of wheat, at $\$ 124$. . $^{5} 5 \mathrm{~m}$. per bushel \}.

What is the amount of $16 \frac{7}{2}$ yds. calico, at $4 c .6 \mathrm{~m}$. per yd.?
What is the price of a choise 275 miles, at 5 c .7 m . per mile?
A merchant bought 50 pieces of calico, each piece containing , 36 yds. at 30 c .7 m . per yd. What did the whole cost ?
A schoolmaster indented to instruct 40 pupils, divided into 4 classes, for six lunar months, on the following terms: 1 class at 3 c . 5 m . per day; 2 class at 2 c .7 m . per day; 3 class at 1 c . 2 m . per day; 4 class at 7 mills per day: Each class containing 10 scholars, and each scholar paying, per week, the sum above stated; What are the weekly, the menthity, and semiannual expenses of each pupil, and the whole wages of the master ?

A shoemaker sold 36 dozen of shoes, at $\$ 1$ 45c, for each pair; What sum did.he receive for the whole ?

DIVISION OF FEDERAL MONEY AND DECIMALS.

Rule 1.

If there be more decimals in the divisor than there are in the dividend, annex cyphers to the dividend to make it equal to the divisor.
2. The decimal places of the divisor and quotient, counted together, must always be equal to those in the dividend; and if the number of places of decimals in the divisor and dividend be equal, the quotient will be whole numbers.
3. If decimal places be wanting in the quotient, they must be supplied by annexing cyphers to the left hand.
Note. If the dividend be greater than the divisor, the quotient will be greater than the dividend : but when the dividend is less than the divisor, then the quotient will be less than the dividend, and in the same proportion as an unit is greater or less than the dividing fraction.

Examples.
72),196416(,002728

144
524
504
201
144

576

576
In this example, there being no decimals in the divisor, I annexed two cyphers to the quotient, to make it equal to the clividend.
2. It is required to divide 45, by ,5365.
,5365)45,0000(83,8769

- By annexing a capher to the 3 remeining, yoŭ set 7 mille. The Quther is of no grepurtic

d. c. do.	
5,44)86,00(15,080. 8	41,)742,651(18,113
46,72)786,74(16,839	42,5)5,29125(,1245
36,5),0076345(209 \dagger	29,)153,598(5296 \dagger
; 684),76432(1117 \dagger	,0125),7500(60†

If 78lb. of flax cost $\$ 1053 e$. What is that per $\mathbf{1 b}$. ? Ans. ,13c. 5m. If I have \$10. 50c. for 30 days labor, What is that per day 1

Ans. ,55c.
If $36 . y a r d s$ of cloth cost $\$ 86$ 48c. What is that per yard ? Ans. $\$ 5240 \mathrm{c} .2 \mathrm{~m}$. If 84 bushels of corn cost $\$ 46$ 62c. What is that per bushel ? Ans. ,55c. 5 m . If-20 hundred of hay cost $\$ 1810 \mathrm{c}$. What is that per huy dred?

Ams. ,90c. 5 m . If 32 grallons of rum cost $\$ 37$ 28c. 4m. What is that per gallon? - Ans. $\$, 116 \mathrm{c} .5 \mathrm{~m}$. If 205 yds : of calico $\operatorname{cost} \$ 10762 \mathrm{c} .5 \mathrm{~m}$. What. was the price of 1 yd ? Ans. 52 c . 5 m , If 125 bushels of wheat cost 895 , What did the purchaser give per bushel ?

Ans. 76c. If 493 yds. of tape cost 5443 c .7 m . What was given per yd. ? Ans. 9m.
By operating carefully the following sums, the learner will perfect himself in all the various cases of decimal division.
$\div, 803$ by ,22. Ans. $3,65 \div$, 803 by 2,2. Ans. ,365. $\div, 803$ by 22. Ans. ,0365. $\div 80,3$ by ,22. Ans. $365 . \div 80,3$ by 2,2. Ans. 36,5 . $\div 803$ by 22 . Ans. $3,65 \div 222$ by ,365. Ans. $608,21 . \div 222$ by 3,65. Axs. $60,821 . \div 222$ by 365. Ans. ,60821:
N. B. In dividing by $10,100,1000,10000$, \&c. the learner bas nothing to do, but to remove the comma, or separatrix, as many figures to the left hand, as there are cyphers in the divisor.

Examples.

$$
\begin{array}{cc}
10) 462,3(46,23 & 100) 7342,6(73,426 \\
1000) 96742,67(96,74267 & 10000) 42367,4(4,23674
\end{array}
$$

[^0]
REDUCTION OF FEDERAL MONEY AND DECIMALS.

Case 1.
To reluce a Vulg Fraction to a decimal of equal value.
Note.-A fraction is called vulgar ordecimal, according to the division of an unit.
A Yulgar Fraetion is represented by two numbers, one above the other, with a line drawn between them, thus, t. The upper figure is called the Numerator, and the lower figure the Denominator, as, $\frac{3}{4}$, $\frac{5}{6}$. which signfy three fourths, five eights, that is, of an unit.

The denominator shews the number of parts an unit is divided into; thets, $\frac{3}{4}$ signifies that an unit is divided into four parts, and the numerator, 3 , shews uiat three of those parts are signified by the fraction.

Rule 1.

Both terms are to be esteemed whole numbers. Annex cyphers to the opper term, or mameratior, and divide it by the loiv: er term, of denominator.
2. Point off as many places for decimals, in your quotiont, as you annex cyphers to the numerator, and if the decimal placelt, in the quotient, be not so many as in the dividend, annex cyphers, to the left hand of the quotient; to make them equal.

Examples.

1. Reduee $\frac{1}{4}$ of dollar to decimals, or into cents. Ans. ,25a. 4) $1,00(, 85$

20
20
2 Reduce $\frac{1}{2}$ of a dollar to decimals, or to cents. $4 n s, 50 \mathrm{c}$.
2) $1,0(5$

10
In this example the decimal 5 , occupies the place of tenths, or dimes, wokich makes it , 50 centit.

- 3. Reduce $\frac{5}{4}$ of a dollar to decimals, or to cents. Ans. 75 cc .

4. Reduce $\frac{1}{8}$ of a dollar to decimals, or to cents. 4 ns . 12 cc .5 m

5 : Reduce $\frac{1}{16}$ of a dollar to decimals, or to cents.
Ans. $306 \mathrm{cc} 2 \frac{8}{10} \mathrm{~mm}$
6. Reduce $\frac{9}{2+0}$ to decimals: Ans., 0375 .
7. Reduce $\frac{39}{878}$ to decimals. $4 n s ., 14028$.

Case 2.

To reduce the different currencies, of the several states, in pounds, shillinga and pence, to Federal Money.

1. To reduce 入ewo:England, Firginia, and Kentucky currency to. Federal Mioney.

Ruker 1.

Add a cypher to the pounds, and divide by half the number of shillings in the dollar and the quotient will be dollars.

Rule 2.

To the whole sum of the pence, contained in the shillings and pence, add two cyphers, and divide by the number of pence con'tained in the dollar, and the quotient will be cents.

Jate 1. Farthings are so inconsiderable as not to deserve any notice.
Note 2, If the shillings and pence remafit one, two, or three dollars, you may add them to the dollars already found, and then reduce the remaining shillings and pence into cents, according to the second rule.

Note 3. A dollar, in New-England, Virginia and Kentucky, is 6 shillings.

Examples.

1. Reduce 482. 138. 6d. to Federal Money. Half ahilling $=3) 480$
$160=$ dolls. 138. $6 d=162$ pence.
2,25.
Ans. $\quad \$.162,25$

2. Reduce 246l. 1is. 9d. to Federal Money. Ealf shillings=m;2460
$820=d o l .17 s .9 d .=2 d 0 \% .69 \%$
2,978

Ans. $\quad \$.822 .958$
del. $=72) 6900(956$
648
420
360
After having obtained
the 97 cents, I found 60 remained ; to which 1 added a cypher, and divi-

$$
\begin{gathered}
72: 600(8 \\
576
\end{gathered}
$$

ded by 27, which produced 8 milis, with a remainder of 24. ,
3. Reduce $89 l$ 14s. 8d. to Federal Money.

Half shillings=3)820

- 273 亲 of a dollar remains $=28$.
which Lsake and add to the 14s. 8d. $=1688 d .=2 d o l=56 d^{\circ}$

$72) 560(7 \mathrm{~m}$
.504
$\frac{56}{72}$ harts of a mill.
Pounds and shillings, in this currency, may be more readily brought into dollars and cents, as follows:

RuLE.

Annex the figure, that represents half the even number of shilings, to the right hand of the pounds; of, if there be only one shilling, add a cypher; apd if the number of shillings be odd, place 5 as a decimal, for the odd shilling; diyide by 3 , the -quotient will be the answer. . .

Reduce 74. 18e. to Federal Mpney.

$$
3) 79
$$

dine. S. 26,333童

[^1]
$$
32220,5
$$

Ama 58:78,50
Reduce 175: 13e. to Federal Money.
3) 176,5

Ans. 8. 58,833 表
2. To reduce $\mathcal{N e v o}-\mathbf{Y o r k}$ and Narth-Carelina currontey. to Federat . Aloney.

入ote. In this currency 8 . make a dollar.
Ruze.
Proceed according to the foregoing rules, with observing; that 8s.=a dol. and 96dea dol.

1. Reduce 64l. 8s. 10d. to Federal Money:

Fialf ahillingse=4)640
88. $10 d .-1$ dol. $=10 \mathrm{~d}$.

160
$1,104$ dol. $=96 d) .1000(10 \mathrm{c}$.
Ans. 85. 161,104
96) $400(4 \mathrm{~mm}$. 384 $\frac{76}{88}$ pts. m
2. Reduce 74l: 3s. 4d. to Federal Money. FIatf Nhill.=ت4)740

3. To redrece pimpulzania, Neve-Jersey, Delaware, and viswoy. limed currency to Nederal Napoy.

Rule.

Multiply the pounds by 8 , and divide the ptoduct by 3 ; the quotient will he the dollars. For the ohillings and rence, you must proceed as before.

Note. A dollar in the cursency of these States, is 7s. $6 \mathrm{~d} .=$ 90d.

1. Reduce 24l. 18s. 4d. to Federal Money.

) 300 ($4=$ mills: 360

$$
\frac{40}{90} \text { parts of a mill. }
$$

2. Reduce 47l. 6s. 4d. to Federal Money.

1ns. 85. 126,177

$$
720
$$

$$
400
$$

$$
360
$$

$$
{ }_{360} 400(4=\text { mills. }
$$

$\frac{40}{9 \%}$ pts. of a mill.
4. To reduce Federal Money to Newo-England, Virginia; Nexso Fork, Esc. cutrency.

Rues 1.

Multiply the dollargs by half the number of shillings in a dollar, and double the right hand figure for shillngs, the rest are pounds.

Rule 2.

Multiply the cents, by the number of pence, in a dollar, and dic vide by 100 ; the quotient, will be pence.

- When the divisor is.greater zhan the mumber of fience, in the div:
 tenths, or dimes, in the guedient.

$$
\begin{aligned}
& \times 8 \\
& \text {-3)376 } \\
& 6 \text { 6. } 4 d=76 \\
& \text {--c.m. } \\
& \text { 125,333 } \\
& \text { \$. }=1=90) 7600(84 \text { ecocents. }
\end{aligned}
$$

1. Reduce $\mathbf{8 . 1 6 2} 25 \mathrm{e}$ to New-England currency,

$\times 3$

$$
48) 6=12 \text {, dopubled. } 25
$$

Aris. 486. 13s. 62

$$
50
$$

175

$$
\text { 1) } 00) 18(00=1 \mathrm{~s} .6 \mathrm{~d}
$$

2. Reduce $\$ \mathbf{\$} .64674 \mathrm{c}$. to New-England currency:

Ans. 194l. 0s. 5d. 1s.
2. Reduce $\$.161$ 10c. to New-York, \&c. currency.

$$
\begin{array}{r}
\frac{4}{64) 4}=8, \text { doubled } \quad \$=96 \\
\left.\ddots \quad \frac{10}{1} 00\right) 9(50=916
\end{array}
$$

The remainder being equal to $\frac{1}{2}$ the divisor; produces the $\frac{z_{2}}{2}$ d.
5. To reduce Federal Money to Pennsylvania, Ejc. currency.

RURs.
Multiply the dollar by 3, and divide the product by 8; thie quotient will be pounds. Then multiply the cents, by the number of pence, in a dollar, and divide that product by 100 ; it will givethe answer in pence.

1. Reduce $\$ 8.476$ 20c. to Pennsylvania currency.
8) 1428
$178 \frac{4}{8}=10$ s 1) 00) $18(00=1 \mathrm{~s} .6 \mathrm{~d}$.
l. \quad. \quad The 4 eights, reduced to their $178: 100$ lowest term, make $\frac{7}{3}$, that is, one half of $20 \mathrm{od}=10 \mathrm{epr}$, the 4 multiplied by $20, \equiv$ the shillings in a pound, and divided by 8, wilb
$90=$ bence in a dol. 20
 currency ? Ane. 4000.
4. What is the sum of 8461 . 13s. 10d. Deleware ourrency, In Georgia, curremicy ? $\Lambda_{13 \mathrm{~s} .}$ 326, 16, 7, $\frac{13}{45}$
5. Reduce 1556, 13, 9\% New-Hampshire currenioy to Pennsylvania currency. Ans 1945, 17, 3.
6. Reduce 9000 . New-Jersey currency to New-Iork currency. Ans. 9800.
7. What number of tiollars is contained in 8007 l. North-Caralina currency?

Ane. 2112,50.
2. Reduce 845l. 108. New-York money into Federal currency.
9. In New.England currency, what is the amoune of $2113,75$. New-York money? \quad Ant. $410,15,1,1$.
10. Reduce 1903, 16, 3 New-York money, into Virginia money.

Ane. 142\%, 17, 2, 1.
11. What is the sum of $5913,8,9,3$ Maryland currency in. New-Yotk money?

Ans. 6307, 18.5.
12. Reduice 64 , 15, 7 New.York ourrency into New.Jergey: currency:

Ans. 603, 10, 10, 3

Case 8.

To reduce nimbers of differont detomonatione to decimato.
Rues 1.
Fiace the nuriber, you are to reduce, fer ia nomeratiop pant the integer, you are required to reduce your number to the decinand of, for a denominator.
2. Feduce the numerator and denominator to the lowest term mentioned in your numerator: add cyphers to the mumeratos, and dividait by the donominator, and it will give the decimal required.

1. Reduce 9 pence to the decimal of a pound.

240) 9,00 (,0375=Answer.

720
1800 In this ezample I added 4 cyphérs to. 1880 - the nuimeraton oonsequently my quotient 1200 must dousist of 4 pláces, meteable to.
1200. rule 2d, under case 1.
2. Reduce 6 pence to the decimal of a poundr- 1

480
1200
4200

FRpanyty Moy

\$ Reduce 3 penceto the decimal of a shilinge
3 fincesmis of a shill.
12)3,00(,25 Anower.

24
4. Reduce 1 shilling to the decimal of a pound:

1 okill. $=\frac{1}{2 \pi}$ of a poound.

$$
\text { 20)1,00(,05 } 4 \text { neweer. }
$$

5. Reduce 2,3 , 4 . 5 and 6 stillinga to the decimal of x^{-} pound.

Shillinge: 2 3 4. 5.6 :
Ahimerie. , 1,15 , 2 ,25,3:
6. Reduce 150: 8d. 3q. to the decinyah of apound.

 Ans. , 7177.

12. Tregna $=5769 \mathrm{gr}=\frac{8186}{6780}$
8. Reduce 3qrs. 12 lb .80 z .6 dr . to the decimal of a cwt. Ané ,86i8.
9. Reduce 3qre. 2na.' to the decimal of a yard. ${ }^{\text {dne. , } 875 .}$

Different denominatione-may be reduced to decimale by the following rulear

Rule f:

Set the numbers under each other, for dividénds, having the lowest denomination at the top:
2. At the left band, opposite to each dividend, set that number that will bring it to the next supprior denomingtion.
3.-Beain with the uppermost dividend, tupposing cyphieris to be annexed to it, and divide is, eatting fbe quorient, as: decimal parts; at the right hand of the dividend tiext below it, and so proceed with earh dividend, and therlanequotient will be the' decimals required.

Eximptes:'

3. Reduce 1 pint to the decimal of a gallon. Ane., 125.
$\cdots \quad . \quad \therefore \quad .$, Cuss 4.
20. find the proper quantify, or value of a decimal in the known parts of om integer.

Rule. 1.

Multiply the given decimal by the number of parts in the next inferior denomination cut off. an many figures to the right bapidis as there are places in the decimal given.
2. The remaining. figures, at the right hand, multiply by the next inferior denomination, cut off as before; and so proceed till you have reduced it to its lowest denomination, and the figures $;$ at the left hand, will be the answer required.

$$
\because: \ldots \text { ! }
$$

Examples:

1. What is the proper quantity of $; 5396$ of a pound 2 .

Ans. 10z. gid 2 qr.
2. What is the proper quantity of 56 of a pound $?$
3. What is the proper quantity of ; ; 86 of a shilling?

Pot
12=tance ina a a tilling.
2,432.
$4=$ farthings in' a penny.
1,7,28
4. What in the proper quantity of 8 gi of a curt?
6. What is the proper graditityof;4766 of a 21 lb . Troy?

6. What is the proper quantity of 78 of an acre of land ? Ane. 3r. 4p. 217.ft. 115in 13: e.
7. What is the proper quantity of 045 of a day ? $A n s .10 \mathrm{~h} .48 \mathrm{~m}$
8. What is the proper quantity of ; 61 of a ton of wine ?

9. What is the proper quantity of 3 of a year ?
: Ans: 109days. 12hrs,

Case s.:

TO REDUUCE FEDERAL MONET.
Speaking properly, this is not reduction; either by multiplication or division; for it is performed either by removing or adding the commas, as the case may require.

Rule 1.
To roduce collare to cento--Remave the comma, and add-two cy. pheta to the dillars, and the product will be cents.
. Reduce 78 dol. to cents. $\because \quad$. Ans. 7800° cents.
2 To reduce dollars to mills.-Remove the comma, and add three cyphers to the dollars.

Reduce 64 dol. to mills. Ans. 64000 mills."
3. To-reduce dollare and cente to mills. Remove the comma, and add one cypher to the cents.

Reduce $\$ \mathbf{\$}-98$ 24c. to mills. -- \quad Ans. 98240 mills.
4 To bring milla into dollare.-Separate three figures to the right hand, by a comma, the left hand figures will be dullars, and those at the right hand; cents and mills.

In 68973 mills, How many dollars, cents and mills ?
4ns. 8.6897 c .3 m .
5. Te bring cents into dollars.-Sepapate two figures, to the rigite han d, by a comma.

In 7896 cents, How many dollats and cents ? Áns.

RULE OF THREE DIRECT, IN FEDERAL. MONEY AND DECIMALS.

Rule.
Reduce your fractions to decimals, according to the foregoing rules; state your question as in the Rute of-Three Direct in whole. numbers. Multiply the second and third terms'together; divide thast product by the first term, and the quotient will be the answer.

Examples.

1. If 6 lbs . of buiter cost, 96 cc . What will 5 5 lbs cost at the mame sate?

56
576
480
6)53,76

8,96'
2.If 964 buyth, of butter, What wril 98996 c . biay at thatante!
 ane. 36 bineititist :
4. If 14 yards of cloth cost $\$ 55$ What will 20 yatds epast atthe same rate? $4 n e .8112$
 cose : .
 cost?

Ans. 868 97s: 6 m: :
7. If ,24.5 5m. buy 8 lemons, How many can i have for g^{2} 15?

8. If 84c. buy 2 bushels of potatoes, How mbary hashele will S. 12 buy! Itre: 28;57. buikefs:
9. What is the price of a pint of wine, at \$'1 75c. a gallon ? Ance: 210 8 mi
10. Thie wetilly pay of a journeyman, at, 57% a zutet, is Hostponed for 3 yyears, 9 monihs and 10 days, What is his due ?

11. What is the cost of 17ewt. Seq. 141b. si. Lece atb: ?

Ans. 8 S. 200 20k.
12. At ,55e: 2 diby, How many days work can you hire for 18 ? . An . 38, 7 daye.
13. A. owes B. $\$.175358$ a but B: comporide with him for. ,656. on the dollai, fat must B. receive for his debt :
 worth at that rate? Ahe. ,16c. $0 \frac{8}{10}$
16. If my ireome, yearly, be \$8730 How much may 1 expend diily, and have \$91-95e. feft at the years end?:
16. A merchisnt chipe fon the. Weat-Indies 39000 fent of boands,
 quinter, 15000 of ahingles, at "88.20c. per thousand 34400 of hoops, at $\$ 160 \mathrm{c}$. per thousand; and 1000 dollars: and in return, he had 3000 galions of retti, at 56 c . per gallon 2000. galloni of molaspes, at ,20c. per gallon: 10colb: of coffee, at Tise per 1b, and lecivt. of sugar, at $84 i s 00$. per cwt ; and hin oharges on the woyage were gris3 8 uc.;-Did he gain ot lows by the woyage, and 'zow much'?

Ans; he neither gained nor lost.
17. What in the value of $6 . g r o s g$ of huttong, at $\mathbf{s} 12 \mathrm{c}$. Sm, per. dozen?

Anv: 9 dalh
18. If tax of $\$ 5744$ 24e be laid on a town, of which the polls pay 100 dollara, and the valuation of all the estates in the town amounts to $\$ 18240$, What will it be on the dollap ?

Ane ,02c. 6m:
19: If a tax be laid on a town, which amounts to,026, 6 m on a dollar, What must A.pay, whose real and personal estate is valued at 845028 c ?

4nas. $\$ 1170 c .7 \mathrm{~m}$.
20. A.merchant bought 6 pieces of calico, each piece containing 28 yards, for which he grave $\$ 100806$. and he would sell it so as to gain 20d. per cert. How must he sell it per yard? 4ne. 72c.
21. What does the, insurance of 82650 60e. amount to; at \$4 50e. per cent?

Sne. 811927 c .7 m :
22. If 30 pence and 40 groats buy 50 pints of wine, What is the cose of 60 quarts, in Coinmibia's Federal coin ?

Ans. $\$ 6$ 33c. 5 m
23. The naliary of the President of the United States is 25000 dollars a year ; What is his pay for a solar monthy a week; in. lay, an hour, and a minute ?

Answers.

d. c. im

2082,33
480,78
46
98
68,
49
$3 y^{2}$
a month.

Answerv.

d. c. on.

2, 85 3, is an hour.
$0.04 \frac{7}{10} 2$ minuto.

INTEREST.

IITHREST is beth Simpic and Compertinat
Srmpan interest is a certain aum agyeed on botween the Iender and borrower; to be" paid for every 100. os collart. which is called the rate per cent. for a year.

Princteal. is suy wum of money, lent, for which interest is to be reccived

The prinoipal and vinonest, ndaded tegethey, is called the empozent.

Note. Simple Intereot is applied to Commission, Insurance; Brokerage, Duties, \&c. or any thing else estimated at a certait: sote per conts.

Case 1.

To eatimate intercet for pounch, shifinge and penco

Rul. 1.
Multiply the primeipal by the rate, cut of the twe right liand
figures of the pounds ; multiply the two figinees at the right hand by 20 , and add the shillings of the principal, cut off the 'two right hand figures, and so proceed till you have ieduced it to its lowest denomination; and the figuress at the left hand will be the interest sought, for one year.
2. When the rate per cent. is 6 , multiply the principal by half the number of months, cutting off and multiplying as be. fore directed, it will give the interest for the given time:

To estimate the interest for days, work by the aliquot parts of a month, or by the Rule of Three Direct.

Eximples.

1. What is the interest of 3302.148 .7 c .3 gr . for one year, \mathfrak{q} 6l. per cent?

$\stackrel{4}{430}$	$\stackrel{8}{14}$	d 7	$\begin{gathered} g r . \\ 3 \\ 6 \end{gathered}$
19)84	7	10	2
- 20			
$\begin{array}{r} 16) \$ 7 \\ 12 \end{array}$			
$\begin{array}{r} 10) 54 \\ 4 \end{array}$			-

Ane. 19h-16i. 10d. 2qri
2)18
2. What is the interest of 252 . 12s. 6 d . for 10 months, at 6 d per cent? Sine. $1,5,7,2$.
3 Wi,at is the interest of $1362.14 \varepsilon, 8 \frac{1}{2} d$. for 11 monthe; at 6i. per cent? Ans. 7, 10, 4,-3.
4. What is the interest of 701 . 1fs. $8 d$. for 7 months and 10 days, at 6L per cent? Ans 2, 11. 11, 1.
5. What is the interest of 1381 . 12s. 8d. for 18 months, at 5l. per cent?

6 . What is the interest of 841 . 12s. 9 d . for 17 . moaths, at 64 . ger cent? Sns. 7h. 3e. $10 \frac{1}{2}$.
7. What is the interest of 1281. 158. 6a from Jan. 10. 1797. to. Juily 20,1799 , at $6 l$ per cent 9 . Ans. 19l. 10s. $3 \frac{3}{4}$ d. ©
8. What is the onterest of 2301 . 14s. 7 d. from the 9 th of Mays 1797, to the 4 th of April, 1799, at 6l. per cent ${ }^{2}$. Ane. 26i. 8s.

swtramsti:

Case 2.

To eatimate the Interest of Federal Money. Rule.

When the rate per cent. is $6 d$. multiply the principal by half the even number of months, and a sixih part of the remaining days, placing the sixth part of the days as decimals; cut off the two right hand figures of the dollare, or integers, and the left hand figures will be dollars, and the right hand figures, parts of a dollar; the interest required.

Note. If there be an odd month, reduce it to days.

Examples.

1. What is the interest of 267 d. 27 c . for 6 months and 24 dlays, at 6ch per cent. ?

2: What is the interest of $136 \mathrm{~d}: 84 \mathrm{c}$. for 15 months and 21 days, at 6d.per cent?

$$
10) 74,1940=10 \mathrm{~d} .74 \mathrm{c} .1 \frac{\mathrm{~g}}{10} \mathrm{~m} .
$$

3. What is the interest of $\$.76028 c$ for 19 months and 27 days, at 86 per cent? Ans. 875.64 c .7 m.
4. A note was given Nov. 15, 1796, of $\$ 282$ 50c. May 9, 1797. $\$.96$ 34c. were endorsed; and Dec. 20, 1797, there were $\$ 8.174$ 28 c . more endorsed; and Jane 10.1799, the note was taken up. What wan the last payment, interest at $\$.6$ per cent. 2

Ans. 8.2971 c . 3 m.

- Point off as many decimals as there are in the multiplicand and nutiplier.


```
    8. c.
        Notes
    282,56
    \(\chi^{2}, 9=5\) mo. 24 daye.
    8,19 4 infercest.
282,56 principal adiled.
290,75 4 amsount.
    96,54 endorsement cubtracted
    194,41 4 due MKay 9, 1797。
\(\times 3,685=7\) mo. 11 dage.
    7,16 4 interapt.
194,414 principal added.
201,57 8 cmmornt.
174,28 endorsement subtracted.
27,29 8 dree December 20, 1797.
\(\times 8,85=17\) mo. 21 dayp.
    2, 人15 interest.
27,298 princiffal added.
29,11 3 due.June 10,1799. Sntuwor:
```

Note. It is customary with some, to cast the interest of the whole principal, for the whole time, and find their atmount; thel to cast the interest on the several endorsements, and tind.theit amount, and deduct it from the amount of the principal.

To cast the interest of the above sum, according to this method,'the gum due would be only \$:28 7c.; which would be $\$ \mathbf{8 . 1}$ 64 c . 3 m . less than the former method.
5. A note was given January 20th, 1797, of 8 s .360 50 c . S September 10th, there were $\$ 8.200$ paid, and December 20th, 1798, it wis taken up; What was the last payment; interest at 6 fer cent. a' • . Ane. 8.18 F 74 c
6. What is the interest of $\$.786 .28 \mathrm{c}$ or 24 days, at 6 por ceint ? Ame 8.31 Ic 5 mm .
7. What is the igterest of 8880.96 c . from April $1 \mathrm{st}, 1795$, te July 7th, 129.\% intexent at.6 jer cont? Ano. 1.586 c .8 mp .

Case 3.
Th fond the innereast whien the rate iff, or to not 04.
Ruse.
Multiply the principal by the rate per cent. cut off the two right hand integers, as before, and it will give the interest for
me year: and if there be parts of year, you must take parts of the sum;' any for 8 months, you must take 흘 of the product for one year; for 6 months $\frac{1}{3}$; for 4 monthe $\frac{1}{3} \& c$. For 20 days take $\frac{2}{3}$ of the product for one month ; for 15 days $\frac{1}{2} ;$ for 10 days $\frac{\pi}{3}$, \&c.

Examples.

1. What is the interest of $\$ 270$ for 1 year and 3 months at 5 per cent?
d.
270
$5=$ rate per cent.
3 months $\left.=\frac{1}{4}\right)$
$13,50=$ interest for 1 year.
$3,365=$ interest for 3 monthe.
\$. 16,875=the Anarwer.
2: What commission must you pay an 8 ent. ${ }^{7}$ Ams: 831 17c. 9 m .
2. What does the insurance of $\$ 2230$ amount to, at $12 \frac{1}{2}$ per cent. 3

Ans. $82787 \dot{5 c}$.
4. What is the interest of $\$.98727 \mathrm{c}$. for 11 months and 10 days, at 4 per cent. ${ }^{2}$

2,1938-from one yeards interest.
37,297 memint. for 11.1 monition, 10 dnys.

Case 4.

To caiculate intereot for days, at any rate per cent.

Rule.

Multiply the given principal by the given number of days, and that product, by the interest of one dollar for one year, at the given rate per reme. (which, if 0 per cert. is ,06c. if 5 per cent. is ,05c. if $4 \frac{1}{2}$ per cent. is ,04c. 5 me . de.) divide the last product by 365, (the days in a yearn). and it will give the interest, in dollars andiparts-of a dollar:

ARITHMTYTC.

Exampliss.

1. What is the interent of $\$ 17558 \mathrm{c}$. for 85 days, at 6 peri cent.?

35
2. What is the interest of $\$ 78528 \mathrm{c}$. for 220 days, af 5 per cent. 9 Ans.' $\$ 23$ 66c. $5 \frac{9}{10} m$.
3. What is the interest of $\$ 8.987$ 75c. for 136 days, at $4 \frac{1}{2}$ per cent.?
$\stackrel{d}{d . c .}$ 136

592650
296325
.98775
134334,00
, 045

$$
\frac{53733600}{465) 6045,03000(16 d .56 c: 1+10 \mathrm{mi}} \text { enswer. }
$$

4. What is the interest of 586 , 25 , for 84 days, at 3 per centio
5. What is the interest of 689 d .80 c . for 20 days, at $3 \frac{1}{2}$ per cent ${ }^{2}$? Ans, 1d. 34c: 2 m .
6. What is the interest of 1000 d. for 150 days, at $8 \frac{\pi}{2}$ per cent? Ans. 34 d . $\mathbf{y} 3 \mathrm{c}$. 1 mb .
7. An obligation was given May 9, 1796, for 467d. ; November 20th, there were 295d. paid, and January 18th, 1797, it was taken up; What was the last payment, interest 5 per cent?

Ane. 185d. 96c. .

Case 5.

Compound Interest is that which arises from the interest's being added to the principal; and being continued in the hands of the borrower, it becomes a part of the principal at the end of each stated time of payment.

Rule.
Find the interest of the given principal for one year, and add it to the principal; next find the interest of that amount, and add it as before; and thus proceed for any number of years. The given principal being subtracted from the last amount, the remainder will be the compound interest.

Examples.

1. What is the compound interest of $855 d$. for 3 years, at 6 per cent.?

2. What is the compound interest of 768 for 4 years, at 6 per cent? Ans. 201d. 58c:
3. What is the compound interent of 560 d . for 31 years, at 6 per cent $?$. Ans 126d. 97 c .7 m .
Note. After you have goten the amount for 3 years, multiply by 3 , =half the number of months.
4. What is the compound interest of 720 d . for 3 years, at is per cent?

Anc. 113d 49c.

 Another Rule to cabt Impraresto

Rule.

Multiply the principal by half the months and half the dey: cimal of the days anrexied to the months.

Or, Multiply by the whole sum of the months and whole decimal of the days, and the prodact will be just doable the interest. In either case, strike off at many figuressfrom the right hand of the product; as there are decimal places in the multiplicand and multiplier. The figues on the left, hand, will be the answer in cents.

Excinptizs.

1. What is the interest of $102 d .50$ c. for 2 years, 2 months and 17 days, at 6 per cent 2 .

102,50 principal. 13,28 half.	$\begin{array}{ll}\text { Secositl moder } & 102,60 \\ & 26,56\end{array}$
$\begin{gathered} 82000 \\ 20500 \end{gathered}$	$\begin{aligned} & 61.500 \\ & 51250 \end{aligned}$
30750.	61.500
10250	20500
1361,2060	2) 2722.4000
361 cents, os	1361,2 hatf
61c. 2in:	1361 cants 2 mills;

13d: 61c. 2q8.
Promiscuous examples, in Interest, to be cast up by each preceding rulc, in separate operations.-To be well versed, in casting interest, is highly useful to all persons Instructors ought. therefore, to take special pains with their pupils, in this. part of arithmetic. The answer: to some of the questions, is intentionally omitted.

Examples.

- i. What is the interest of $280,12,9$ for 1 year ind 11 months, at 6 per. cent ?

2. What is the interest of $218,7.3,2$ from $10 h \mathrm{~h}$ May to 25th October, at 6 per cert? Ame. 9e. 6d. 2q.
3. At 6 per. cent, What in the interest of $\mathcal{E} 19,13,7$ from $3 d$ January, 1806, to 18th Mar, 1807. Ane. 21, 12, 5, 1.
4. What is the interest of $82 \% 6$ dol. $73 \mathrm{c}_{\text {i }}$ for 7 years, 8 months \boldsymbol{s}_{i} at 7 por cent? Ans. 4441, 84.
5. What is the interent of 8796 dolo. 57 cents, for 7 yeard, 24. months, at 7 per cert?
6. What is the initeret-of 9369 dol 25 , at 7 per cent for $2 y_{4}$ 3nis 4d.

BDUBLE ROLE OF. THRES:

7. At 3 per cent. What is the interest of $\mathbf{E 5 4 7}$ 16s. for 6 years ! Ans, 2164, 6, 6. 8. At 6 per cent: What ie the interest of $£ 325,7,6$, for 3 yeam and a half ! Ans. $£ 68,6,6,1$.
8. At 4t fer cem. What is the intetest of 2576,$2 ; 7$; for 74 years! Ans. 187, 19, 1. 2
9. At $2 \frac{1}{2} p$ or cent: What is the intetegt of $\dot{E} 256,5,3$, for2 $\frac{1}{3 z}$ years ?
10. At 4\% per eens. What is the inftrest of $\mathbb{E} 375$, oy i, for 2 monthe?
11. At 5 per cent. What in the interest of $259,13,5$, for $1 \frac{8}{12}$ year ?
12. What is the interest of $6347,5{ }_{4} 9$, for $\frac{7}{4}$ yedr, at 6 percent?

$$
\text { Ans. } 25,4,2
$$

14. What is the interest of 184 clolls. for 5 months, at 6 per cent?

Ans. 3, 10 .
15. At: 10 per cent. What is the amount of 694 col. 84 cents. for $1 \frac{1}{2}$ year?

Ains. 104 dol. 22c: 6 mm .
16. At 6 per cent: What must I give for the use of 126 dol. $16 \mathrm{c}_{\mathrm{c}}$ for $2 \frac{3}{12}$ years ?

Ans. 17 d .07 c.

- 17. At 6 per cent. What is the maount of 268 dol. 44 c . for 3 years, 5 m .26 d . Ins. 56, 19; 3. 18. On compound interest, What is the amount of $£ .259,10$, for 3 y .9 m . 10 d . at 9 per cent. ?

Ans: $£ .94,0,8,2$.
19. Un compound interest, What must B. pay A. for the: use of $\mathcal{E} .400$, for 7 years; at 6 per cent. $8:$:Ane, w.981; 7,102

DOEBLE RULE OF'THIEE.

IN this rule, there are five numbera given to find out a sixtly; which is to be in the same proportion to the product of the fourth and fifth numbers; as the third number is to the productof the first and second numbers; in the Direct Rule.

When the question belongs to the Double Rule of Three Reverse, the sixth number bears suck proportion to the fourth and: fifth, as the first bears to the second and third.
The three conditionat terina sinuat be placed in the folliowing. manner, tizz that number, which is the principal cause of gain): loss, or action, must be set in the first place; that number, which denotes the space of time; or distance of place, must be: in the second place ; and that, which is the gain, loss, or action, in the thira place. Having done this; place the other two numbers, which meve the question, directly under those of the same name ; and if the blank place, or term sought, fall urder the third number; then the question belongs to the Direct Rule: C. 2

Rule.
Multiply the three last terms, for a dividend; and the two first for a divisor. .Divide the dividend by the divieor, the quotient will be the answer.

But if the blank fall under the first or secoond term, the question belongs to the Reverse Rule.

Rulx.

Multiply the first, second, and last terms together for a dividend, and the other two for a divisor ; divide, apd the quotient. . will be the sixth term, or answer.

Examples.

1. If 100l. principal, in 12 months, gair 51. What will 2462. principal gain in 7 months ?

As the blank falls under the third term, the question belongis to the direct rule. And of course, the three last terms must be smultiplied together for a dividend, viz. $7 \times 246 \times 5=8610$. The twa first terms must be multiplied together for a diviser, viz. $100 \times 12=1200$.

The aperation at large. $2 . \quad$ m.

2. If 20 men spend 186 . in 24 weeks, How much will 40 men spend in 48 weeks?
:Ans. $72 l$.
3. If 10 bushels of oats be aufficient for 18 horses 20 days How many busheln will serve 60 horses 36 days ?

Ane. 60 bushela
4. A man lent $\$ 350$ to receive interest, and when it had continued 9 months, he received, principal and interest together, 360 dol. 50 centes at what rate per cent. did he lend his money ?

Ans. 4 dol. per cent.
5. If the carriage of 200 wt . from Mendon to Boston, which is 37 miles, cost 16 doi. What will the carriage of 12 cwt . be from gostpn to Worcester, which is so miles !
$2 m_{0} 12 \hbar_{1} 97 \mathrm{c} 2 m_{n}$
\square
DOUBLE RULE Of TRREE.
73
6. If 700 dol. in half a year, gain 14 dol . interest ; How much will 400 dol. gain in 5 years i Ane 80 dol.
7. If 100 dol. gain 6 dol. in xivear ; In what time will 600 dobo gain 24 dol. 3 - Rns. 8 months.

Here the blank falling under the 2 d place, the question belongs to reverse proportion, and the answer must be sought by the $2 d$ rule.
8. If 305 polls pay 28 cents, each; to a state tax of 415 doL What must 112 polls pay, each, to a pirish tax of 300 dollars ?

Ans. 55 cents.
9. If 20 cows for 80 dolls. go 40 weeks to grass; How many cows for 30 dolls. may winter in that place ?

Sine 25 corve.
TABLE I.
In which the different Curreneres, throughout the United States, from One Farthing to a Thousand Pounds, aro reduced to an equivalent value in Dollars, Cents and Mille.

N. Ham.	A. York.	\mathcal{N}. Jer.	S: Caro.
Mass. \boldsymbol{R}.	N. Caro.	Penn.	Georgia.
Iel.Conn.		Dela.	
Vir. Ken.		Alaryl.	
Vermont.	-		

To find the amount, in Pounds, Shillingsy Ponce:and Farthings; in the Currency of any one of the States, ir Doilars, Cents and Mills, look for the several sumss in their respective columns, and in the angles of meeting, in the columns, at the tops of which the States are placed; you will find the amount : add adi: the sums together, and the sum total will be the answer. Thus, 102. (New England currenc:) malle 33dol. 33c. 3en ; 48. make 65 c .7 mp ; 5 A make 6 c .9 m ; 2 q . make 7 m . Now. 33 dol 33 c Sm;
 What is the amount, in Federal Money, of 146.7 s . $9 \mathrm{~d} . \mathrm{s} 9: \mathrm{N}$. Jersey carrency?

Ant. 38d. 37c. 4ne.

COUBLI RULE OT THEES.

TABLE II.

涩等owing the vatue of any number of cents, in other currencies, frön one to an hundred.
\mathcal{N} : Hampshire, Mass R. Iolawd, Coni. Vermont, Firginia,Ken. ${ }^{-}$

C. 8. d q.	C. s. d.q.	C. s. d.q.	C.s.d.q.
$10 ; 0,3$	26 i, 6,3.	$513,0,3$	76 4, 6,3
$20,1,2$	27. 1, 7,2	52 3, 1,2	77 4, 7,2
$30,2,1$	$281,8,1$	5.3 3, 2, 1	$784.8,1$
$40,3,0$	29 1, 9,0	54 3, 3,0	79 4, 9,0
$50,3,2$	$301.9,2$	55 3, 3,2	80 4, 9,3
$60,4,1$	$311.10,1$.	56 3, 4,1	$814,10,2$
$70,5,0$	$3.21 .11,0$	$57.3,5,0$	$824,11,0$
$80,5,3$	33 1,11:3	583,$5 ; 3$.	83 4,11,9
9 0, 6,2	$342,0,2$	59 3, 6,2	$845,0,2$
$100,7,1$	35 2, 1,1	$603,7,1$	$855,1,1$
$110,8,0$	$362,2,0$	$613,8,0$	86. 5, 2,0
$120,8,3$	37 2, 2,3	$623,8,3$	$875,2,3$
$130,9,1$	38 2. 3.1	63 3, 9, 1	$885,3,1$
14. $0,10,0$	39 2, 4,0	64. 3,10,0	89 5, 4,0
$150,10,3$	$402,4,3$	65. $3,10,3$	$90.54,3$
$160,11,2$	$412,5,2$	66 3,11,2	$915,5,2$.
17 1. 0,1	42 2, 6,1	67 4, 0,1	$925,6,1$
$181,1,0$	$432,7,0^{\circ}$	68 4, 1,0	93 5, 7,0
19 b, 1,3	44 2, 7,3.	69 4, 1,3	$945,7.3$
$2011,2,2$	45 2, 8,2	$704,2.2$	95 5, 8,2.
21 1, 3,0	46 2, 9,0	71 4, 3;0	$965, y, 0$
$221,3.3$	47 2, 9,3	$724,3,3$	97.5.9,3
$231,4,2$	48 2,10,2	73. 4, 4,2	$985 ; 10,2$
$241,5,1$	$492,11,1$	74 4, 5,1	99 5,11,
$251,6,0$	$5033,0,0$	$754,6,0$	100 6, 0,

N. York, N. Carol. $\left.\begin{gathered}\text { N. Jer. Penn. Dela. } \\ \text { Mayyland. }\end{gathered} \right\rvert\,$ S. Caral Geergita.

DOUPLE RUCH OF TRREE.
 83

TABLE III.

The value of Ennglish and Portuguesegold,indollars, cents and mills, inthe United States. Cr. Cts. M. Pwt. D. Ctt.

1	3	7			
2	7	4	2	1	$77 \frac{3}{4}$
3	11	1	3	2	$66 \frac{2}{3}$.
4	14	8	4	3	551
5	18	5	5	4	$44 \frac{1}{2}$
6	22	2	6	5	331
7	25	9	7	6	22
8	29	6 -	8	'7	11
9	33	3	9	8	0
10	37	0	10	8	89
11	40	7	11	9	$77 \frac{3}{4}$
12	44	4	12	10	$66 \frac{1}{3}$
13	48	1	13	11	551 ${ }^{\frac{1}{2}}$
14	51	8	14	12	44, $\frac{1}{2}$
15	55	5	15	13	331 $\frac{1}{3}$
16	59	2	16	14	22
17	63	0	17	15	11
18	66	6	18	16	0
19	70	4	19	16	89.
20.	74	0			$77 \frac{3}{4}$
21	77	6	Note. 89cents		
22.	81	5	is the value of		
23	85	2		epw	

TABLE IV.
The value, of French and Shanish gold, in dollars, cents and mills, in the United States.

TABLE VI.
Contraining the valwe of Foreign Coing, in Federat Mo: ney, as estimated by Aet of Congress.
D. D. C. M

Pound stering of Great-Britain, $-\quad .44400$
Pound sterling of Ireland, $-\infty \ldots 0$

Tale of China,1 48 cr.
Millree of Portugal, . $\quad-\quad-1$ 2 a
Ruble of Russig, $\because . .-\quad-\quad-0.6$. 6
Rupee of Bengal, $-\quad-\quad-\quad-\quad 0 \quad 5 \quad 5 \quad 5$
Fiorin, or Guilder of the United Neth-
erlands, - - - . - - 0 S 9 o
Marco Banco of Hamburgh, -. - 0 3: 3 5
Livre Tournois of France, - - - 0 - 18
Rial Plate of Spain, - - . - - 0100
Rix Dollar of Demmark, : - : - 1000

PRACTICE.

practice is a contraction of the Rule of Three Direot, when the fist term happens to be an unit, or 1 ; and is a short way of finding the price of any quantity of goods, \&c. in sterling money; But, whenaver the reckoning in Mederal Momby becomes general, this'rule will beeome almost useless ; for the price of any quantity of goods, in this money may be much easier found by Multiplication.
Previous to working the questions, hereafter given, it is ne-cessary to hare the following tables by heart.

Tables of iven parts.

Rule.

If the given price be an even part of the next higher denomination, divide the quantity by the even part, and the answee; will be in the next higher denomination; but if it be not aneven part, divide, by the greatest nuraber that is an even part, and take parts of the quotient, for the remainder of the price and the sum of these several quotients will bothe whole price; in tise next higher denomination.

Examples.

$\left.1_{0}=\frac{1}{20} l \cdot \frac{3}{20}: 23\right) 4=$ number of e . \&11 148. Ans. .

Here $6 d$. being the price of each $\frac{3 b}{}$. and the half of a shilling: : therefore the half of 468 is taken, and gives 2340 or 111 . 140. .

	784 yds. ${ }^{\text {atat }} 40$.	Here, tak
		of
20	26 1 44.	mains. ${ }^{\text {a }}$,
		dench zrhich here, io four ${ }^{\text {c }}$

 4

TARE AND TRETT.

GROSS WEIGHT is the whole weight of any sort of good's, together with the box, batrel, of bag, \&c. which contains them.

Tate is an allo wancee made in the welght.of gooda, for the box, barrel. firkin, \&cc. in which they are packed.

Trett is an allowance of 4 lb . in every 104 lb . for waste, dust, \&c. Cloff is an allowance of 21 b , upon every 3 cwt .
Suttle is when part of the allowance is deducted.
Neat queight is what remains after all allowances are made.
Cagre 1.
When Tare is at so mach per box, barrel, Eic.
Multiply the number of boxes, \&c. by the tare, subtract it from the gross, and the remainder will be the neat weight. !

Examples.

1. In 5 hogsheads of sưpar, each weighing 8icwt. Iqr. 9ib, grosis; tare 241b per hogshead ; How much neat weight?

$24 \times 5=108 \quad \therefore .8 \cdot 1.9$
41217 grass.
1 0.8-tare.
Ans.: 40. 29 neat.
2. In 12 caks, of indigo, contaiaing 45 cwt . 1qr. 141b. gross, tare 301k per caste; How muah neat weight ?

4ns. 4iewte. 1qr. 181b.
Case 2.
When the Trare is at so musch per cwot.
Divide the gross, by- the even parts of a cwt. to find the tare: subtract the quotient fram the gross, and it will give the neat weight:

Examples.

1. What is the neat weight of 33owt. 2qri 18tb, grome, tase 161b. per cwt. ?

$$
\text { Hes. } 28 \quad 3 \text { 113 meat. }
$$

2. What is the neat weight of 84 ewt . 2qra. 14lb. gross, tare 14ib. per cwt l Sns. 74 ccadt Ogrs. 5il6. neat.

Caser 3.

When Trett is allowed with Tare.
Divide the suttle by 26, and the quatient will be the treft. which aubtwact, and the remaindet wiit be the neat.

Examplifs.

1. In 342 cwt . 2 qrs . 14 lb . gross, tare 101b. per ewt. and trett 4lb. per 104lb. What neat weight ?

2. In 247 cwt 2qrs. 151b. gross, tare 281b. per cwh. and treett 4)b. per 1041b. What neat weight ?

Ane. 178cupt. 2qrs. 916. 40z, neat

DISCOUNT.

DISCOUNT is when a sum of money, due at any timits to come, is satisfied by paying so much preseat money as being: put out to interest, would amount to the given sum'in the same: space of time.

The present value of 53 dol due 12 :monthe henee calculated at 6 yer cent. per anntim, is only 50 wdl.; because; if 50 dol: were to be placed out at interest for 12 moathe, 勛 6 per cent. it apaount would then be 53 dollars.

Role.

Aa the mmount of 1203 or dof for the given rate and times. is to the interest of 1006: of dijnor that cime, to is. the givem. tram, or debt, to the discount required:

Subtract the discount from.the gived sym, and the reyrindit Fillpe the present worth

Mrscownr

91

Exampleg.

I. What is the present value of $\mathbf{3 6 0} \mathrm{del}$. due 2 ytars henees, discount at 6 per cent. per annumis

Ent. of 100 dol. 2 years $=12$ doh $+100=112$ doh d d d
If 112: 12: : 360
12
112)4320(38,571 =discount
336.

$$
800
$$

$$
7.84
$$

160

 11248:
2. What ready money will discharge a debt of 741. 15s. due2 years and. 6 months hence, discount at 6 per cent? Ans. E. 65 .
3. What is the present value of $37.6 d^{\prime} 26 \mathrm{c}$ due 18 montio. hence, discount at 5 per cent. ?' Ans: 350 dollars.
4. A certain parish. settled a Minister, and agreed to give him a salary of $\$ 3.300$ a year: Dut afterwards he wishing to buill' a house, proposed to the parish to pay him, in ready money, 4 : jeurs ealary, to which they agreed; How much ready money must the parishl pays discount at 6 per:cent. per annum?

Ane. \$8. 1047 04e. 9 m :
5. What is the discount of 緊的5, the one half payable in 8 monthe; the other half in a year; at 7 ter cent.?

Ans. $\$.37$ 12c.4in.
6. A. oweś B. 450 dol: to be paid'in 6 months, What discounif at 6 per cent. must be made for ready pay ?: Ans. 436,89 ..
7. Allowing 1 per cent. fir ready pay, What io the discounts at 8 por cent: for 5150 dol due in $4 \frac{15}{3}$.months ? Ans. 4950 dols.
8. What is the discount of $27.5 l$. iUs. font monthe at 5 per cent. 2 Ans: 7, 16, $1,1$.
9. What is the discount, at 5 per cent. of 751 . payalle in 1.3 year ?
$4 n t .70,11 ; 9$, 1 .
10. A. owes B. 150 dol. payable in 60 days:. For prompt pays ment, what is the discount ai 6 per cent?

Ans. 148 dol. 30 cents.
11. What is the discount of 853 doh, at 4 per cent. ?

$$
\begin{aligned}
& 960 \text { de. c. m. } \\
& \text { 896. } 3360,000 \\
& \text {-640 38,571 } \\
& 560 \text { 321,489 = present ruartif; linze }
\end{aligned}
$$

EQUATION OF PAYMENTS.

EQUATLON OF PAYMENTS is when several sums of money, due at different times, are reduced to one proppritional pay; ment, so that no loss may be sustained by either party.

Rule.

Multiply each payment by the time at which it is due, and divide the sum of the products by the sum of the payments; the quotient will be the equated time for the payment of the whole.

Examples.

1. A. owes B. 600 dol. of which 200 dol . are due in 2 months, 150 dol. in 4 months, and the remainder in 8 months; but they agree to make one payment of the: whole ; What is the equated tume for asid' payment ?

$$
\begin{aligned}
& 200 \times 2=400 \\
& 150 \times 4=600 \\
& 250 \times 8=2000 \\
& 600) 3000(5 \text { months, Answier. } \\
& 3000
\end{aligned}
$$

2. B. owes C. 7501. to be psidens fallows, vig: 5001 at 2 months, 150l, at 3 months, and 100l. at $4 t^{4}$ monthe ; When must the Whole be paid together? Ane. $2 \frac{\pi}{2}$ monthrs one half in two months, one chird in 4 months, and the remain:aer in 10 months; What is the equated time for the whole?

Ans. 4 monthe.
4. L. is indebted to 2 . 1201 . of which $\frac{7}{2}$ is payable in 3 months, 4 in 6 months, and the other 4 in 9 months, What is the meat time for paying the whole?

Ans. 7 m . 3 d .
5. At what time must a note of 6.500 be paid, which stipulates, that f. 100 shall be paid in 3 months, 150 , in 6 montha and. the remainder in one year? Ans. 8 m. 12d. 6. What is the equated time of paying a note of 4203 dol. 75 c , stipulating to be paid, at 6 different times. wiz. $\dot{4}$ in 60 days. $\frac{1}{2} 90$ days, $\frac{t}{1} 120$ days, $\frac{1}{4}$ in 150 days, it is 180 days, and in 210 days ? Ans 1271 days. 7. What is the mean tine of paying 120 dol. in to be paif in 90 days, in in 180 days, and $\frac{3}{4}$ in 270 days r Ans. 157 clayd. 8. A note of 1400 dol payable in 90 days, has at the expirition of 60 deys, an endorsement of 1000 dot. Tiow much longer, than the stipulated time of payment, should the possei. oor, in equity, wait for the remaining 400 abl $?^{2}$ Are. 75 dajes.

EMRTEXE

EARTER.

BARTER is the exchanging of one commodity for another, and informs merchants how to proportion their quantities, that rieither may austain loss.

Rule.
Find the ralue of the commodity, whose price is given, then find how much of the other commodity, at its given price; cad be had for that money.

ExAmples:

1. How much rye at 84 cents a bushel, must be given in bar: ter for 60 bushels of corn, at 50 cente a busbel?
60
X4=pecks in a buahe?.
)240(2 pecks: 168

$$
\begin{aligned}
& 72 \\
& \times 8=q u a r t s ~ i n ~ a ~ p r e c k ~
\end{aligned}
$$

$2576{ }^{2} 6$ quarts.
2. B. bartered 3khds. of rum, at $6 \mathrm{~s} .8 d$ a galion, with C. for 126 yards of clotr.; What was the ctoth a yard ?

Lus. 10 s . a yarct.
3. A. bartered 340 ibs . of pork, at , 07 cente a lb. and 80 lbs . of butter at 17 cents al lb . with C . for 16 bushels of salf at. 1 d . 20c. a bushel, and the remainder be reeeived in sugai at 18 cente 2 lb . ; How much sugar did he receive? Ans. $101 \frac{1}{9} l b s$.
4. B. delivèred 15 cwr . 3 qrs. of sugar, at 7 pence alb. to C. for 343 yards of cloth; What did the cloth cost per yard ?

Ans. 30. a yard.
5. A. gives B. 501bs. of wool, at 30 cente a 1 bb . for 1251 bs . of flax: What-is the flax alb.? Ans. 12 cente alb
6. A. bartered 380 yards of calico, at 28. 3d. a yard, and 15 jds. of broadcloth at 15. 10s. a yard, with C. for 3cwt. 2qrs.

ARITEMETAC.

of sugar at 4. 10s. a cWt. and the remainder in molasess at 3o 6d: a gallon; How many gations did he receive?
7. How many pounds of cotton wool, Ans. 218 grat $2 \frac{1}{1}$ ith given, in barter, for 2cwt. of Hyson, at 98 . per lb 1 l . must bt.
8. How much cash must A pay B. in B9 Ams. 5041b. 8 picces of cloth, at f.3, 14. pay B. in B?'s bartering with him 14. per piece for 2cwh of cheese, , nt
 f 30 ; and the remaining sum be paid in raising. B. gave A. How.many pounds of raisins did B. deliver to A at $8 d$, per lb .
10. What is the price of tallow $4 n e$. Hcwer. 1tr. 241b. with the addition of tall. 125 per cwt. when 85 cwt aqp. bushels of wheat, at 1 dol .75 c . pe 128. in cash, pay for 608 , 11. A's. young Hyson sells at per bushel ! Ane. X.3, 10. ter A. demands 8a. The gromh of ga. per lb. in cash; lu barcash; In bartering, what must he ask. tobacco is 9 d . per lb. in an equal profit with A. ?
12. In bartering, M. estimates his cloth' ${ }^{\prime}$ dne. $9 \frac{3}{8} d$. N's. cloth cost bim 18. 10d. per yd. . and he 2o. $4 d$. per yd. 1d. To gain 10 per cent, more than ; and he estimates it at 2 s . for his cloth?

Ans.-2e. 11d. per yat

LOSS AND GAIN.

JOSS AND GA1N is a ru:c which teacheth merchanty wiat they shall gain or lose, in the sale of their goods, having the prite that they bought and sold them for both known; and is perrormed by tiv. Bule of Three.
out again at, 05c. a ib of cheese; at 4a. 67c. a cwt. which I sell

ALETGATYOX madraz.

2. At what price must I sell my cloth a yard, which cant me

3. At what price must I sell my-cloth a yard, which cost the

Sc. 8ad. to lose 12 12 . per cent?
Ame $3 t 2 \frac{\pi}{2} d$
4. If by selling cloth at 4s. $1 \frac{1}{2} d$. a yard, 1 gain $1: \frac{3}{2} l$ per cerst. What did it stand.me in per yard? .
5. If by selling cloth at $3 s \cdot 2 \frac{1}{2} d$. per yard 1 lose $12 \frac{1}{2} /$: per cent. What is the prime cost? Ans. 3s. 8d.
6. Bought salt for 84 cense a bushel, and sold it again for 1d: 12c. a bushel: What did I gain per cent. or in laying out 100 dol:?
7. At $1 \frac{1}{2} d$ a shilling profit, How much per cent.?

Ans. 124. 10t.
8. If 4 cwt . 3qrs. 14lb. of sugar be bought for $15 l$ 18s. 6 d . and sold for 18 f . 15 s . $4 \frac{1}{2} d$. What is the rate of gain per cwt. ?

Ans. 11s. 8d. per curs.
9. What is the gain per cent. on wheat, bought at 11s. and sold 2t-12e. $6 d$. per bushel? Ans. $6.13,12,8 \frac{8}{10}$.
10. What is the price per yd. for cloth, if 375 yds. be sold for X.490, at 20 per cent. profit? ' Ans. $x^{\prime} 1,1,9,1$.
11. What is the profit on 249 gals. of molasses, at 3 s . 4 d . per gal. and sold. at 4s. $2 d$? Sns. £.10, 7, 6.
12. To gain 15 per cent. What must be the price of $1, \mathrm{~d}$. of linen, whén 124 yds. cost 6.32 ? . Ans. 5s. $11 \frac{7}{31} d$.
13. Does a man lose, or gain, in buying wheat at 17%. per bushel, 4 months credit, on interent, or paying ready cash ?

Ans.
14. L.: bought poor brandy, at 1 dol 25 rents per gal. In selling he was compelled to suffer a discount of 18 per cent. What did he receive per gal. ?

Ans. 1d. 2c. 5 m .
15. A corn merchant wishes to purchase 10,000 bushels of corn. By paying the money, he-can purchase at 48 cents per bushel. At 2 months.cresit, he must give 50 cents. Question, will it le, profitable to borrow the money at 8 per cent,?
. Ans. By borrowing he will lose 136 dola.

ALLIGATION MEDIAL

IS when the quantities and price of several things are given, to find the mean price of the mixture compounded of those things.

Ruses.

As the , Thole composition is to its total value, so is any pairt of the composition to its mean price.

Examplig.

1. A farmar mixed 12 bushels of rye at 70 cents a bushel, 15 bushels of Indian corm at 54 cents a bushel, and 20 buakels of barley at 40 cente bushel; What is a bushel of this mixtuxe worth?
 \$3s. 2 cwt . and 2 cwt . at 50s. a cwt.; What is the price of 3 cwt . of this nixture?

Ans. 71. 13s.
3. A vininer mixed 6 gal. of wine, at 4 s 10 d . a gallon with 12 gallons, at 5f. 6d. and. 8 gallons at 6. 6 . 3idd a gallon; What is a gallon of thin mixture worth ?

Ane. 5s. 7d. .
4. What is the value of a bushel of oats and corn equally mixed? The aats cost 2 s 6 d . per bushel; and the corn, 4 s . 6 d .

Ans. 3s. $6 d$.
5. Three sorts of sugar are mixed together; of which 3 cwt were bought at $6.2,16$ per $\mathbf{c w t .}$; 6 c wt. at $\mathcal{K} 1,17,4$ per cwt . and 3 cwt , at $\mathcal{E} .3,14,8$ per cwt . What is the true value of 1 cwt. ?

Ans. 6.2, 11, 4.
6. A vintneracompounds 4 soits of wine, 20 grals. of port, at 5. $4 d$ per gal:- 12 gial of white wine, at 3 s . per gal. 30 gat. of Lisbon, at 6 s . per gal. and 20 gal . of Mountain, at 4 s . 6 d . per gal. What is the value of 1 gal. of this composition?

Ans. 5s. 3d. $3 \frac{5}{2} \frac{0}{2}$ qrs.
7. A goldsmith united, by fusion, 3 sorts of silver; of which; 121b. were $60 z$. fine ; 81 b . 7oz. fine; and 101b. 8oz. fine. Required the fineness of 1 lb .

Ans. 6oz. 18pwt. 16 grs .
8. A dealer. in tobacco, heaps together four Borts af tobacco Of the first sort, 501 b , at 11 d per 1 b . second, 30 lb . at 1 f , $2 d$ per 1 b . third, 25 lb . at 1 s : 10 d . per lb . and fourth, at 28 . per is ; What is the worth of $1 \mathrm{lb},!$ Ans. $16 \mathrm{~d} .35_{7}^{9} 9 \mathrm{grs}$.

ALLIGATION ALTERNATE.

IS the method of finding what quantity of each of the ingre:dients, whose rates are given, will compose a mixture of a given rate.

Rule.

Place the rates of tha simples in a column under each other, and the propounded price of the composition against them; link the severali rates together, in such a sort that one greater than the mean rate may be coupled to another which is leas.j tike the differentes between the mean rate and the several prio. cent and place them each against his yoke-fellow.

2. A merchant would mix three sorts of sugar togerher, viz. one sort at 10d. another at $7 d$ and another at $6 d$. a lbs; How much of each sort must he lake, that the mixture may be sold at 8 d . a lb. ?
3. A farmer has a heap of corn, consisting of 4 sorts. First sort at $2 \mathrm{~s} . \mathrm{6d}$. second, at 3 s .8 d . third, at 4 s . and fourth, at 48 . $8 d$. The number of bushels of each sort is required. Ans. First sort, 12 bushels ; second sort, 12 ; third sort, 18 ; fourth sort, 13.
4. A cask contains a mixture of brandy, wine, cider and water, which is worth 5 s. per gal. Required the number of gals. of each kind, allowing the brandy worth, 8s. per gal. wine 7s. per gal. cider 1s. per gal. and water 0.

Ans.: Brandy, 9 ; wine, 9 ; cider, 5; water; 5.
5. How much rum at $\mathrm{Es}_{\mathrm{s} \text {. per gal. and 4s. per.gal. must be }}$ mixed, so that the composition may be worth 5 s . per gal?

Ams. 1 gal.

SINGLE FELLOWSHIP.

SINGIE FELLOWSHIP teaches to divide any number in. to any assigned number of parts, in the same proportion as* these parts are to each other.

Rule.

As the whole sum of the several stocks is to the total gain or loss, so is each man's share in stocis, to his share of the gain or loss.

Proof,

Add all the shares together, and the sum will be cqual to the given gain or loss.

Examples.

1. A. B. and C. trading together, gained $\$ 120$ which is to be shared according to each-man's stock; A. putin \$140 B. $\$ 300$ and C. $\$ 160$ What is each manis share?

A. put in 140

13. $\quad 300$
C. - 160

$$
\text { If } \overline{600}: \$_{120}::\left\{\begin{array}{l}
80: 28 \\
1400: A^{\prime} \\
300: 60 \text { Bhare } \\
160: 32 \text { ©'s share. }
\end{array}\right.
$$

120 proof.
2. A gentleman died, leaving three children, to whom he bequeathed his estate in the following manner : to his eldest son he gave $\$ 560$ to his second son $\$ 500$ and to the third $\$ 450$ but when his debts were paid, there were but $\$ 950$ left ; What must each have in proportion to his legacy ?
3. A gentleman-left an estate of $\$ 720$ to his three children, to he divided as follows, wiz. as often ai the eldest took up $\$ 7$ the second should take $\$ 5$ and the third $\$ 3$ What did each recéve?
4. A. B. and C. trading together, gained 10101 . which is to be shared according to their stock; A. put in 480l.; B. 680l.; C. 840l.; What is each man's share ?

Ans. A. 242l. 8s. ; B. 343t. 8s.; C. 4241.4 s.
5. Three merchants, in company, have a stock; of which A. put in 6.20 ; B. 30 ; and C. 40. They gain £. $_{6} 360$. What is each man's dividend ? Ans. A. C 80 ;' B. 120; C. 160.
6. Three men, trading on a capital of 6.100 , gain in the folloving manner: A. gains $6.3 ; B$. f. $5 ;$ and C. 6.8 . What sum did each put into the stock ?

Ans. A. put in $\mathcal{K} .18,15$; B. $6.31,5$; and C. 6.50 .
7. A merchant, failing in business, is found with 6.675 in his possession. To L. he owes $£ .275$, 14; to M. 6.304 , 7; to R. ©.152; and to T. C.104, 6. On dividing this property pro: portionally, What witl fall to each man's share? Ans. L. will hare C. $222, ~ 15, ~ 2 ; ~ M . ~_{6} 24.5,18,1,2$; K. 6.122, 16, 2, 3; T. $£ .84,5,5$.
 the stock, A. put $\frac{1}{3}$; B. $\frac{1}{4} ;$ C. $\frac{1}{5}$; and D. $\frac{2}{6}$. What is each man's part of the gain? Ans. A's part is $635,1,9 ; B^{\prime} \mathrm{s}$ (.26, 6, 3, 3; C's £.21, 1, 0, 2 ; D's £. $17,10,10,2$.

BOUBLE FELLOWSHIP:

DOUBLE FELLOWSHIP, or fellowship with Time, is when, the stocks continue in an unequal term of time.

Rune.

Multiply each man's stock and time together; add the several products thence arising together; then, as the sum of those products, is to the whole gain or loss; so is each product, to its share of the gain or loss. Proof, the same as in Single Fellozvship.

sivaze reata

Eramples.

1. Three merchants traded in company ; A. put in 600 dol capital for 9 month's; B. 700 dol. for 12 months, and C. 800 dol. for 15 monthis, and they gained by trade 212d. 10c.; What is each man's share in the gain ?

$$
\begin{gathered}
d . \\
\begin{array}{c}
m . \\
600 \times 9=5400 \\
700 \times 12=8400 \\
800 \times 15=12000
\end{array} \\
\text { If } 25800
\end{gathered},
$$

2. Two merchants trade in company; A. put in 601 . for 3 month6, and B. 501 . for 4 months ; but by misfortune they lose 301. ; How must they share the loss 1.

Ans. A. 14l. 4s. 27d. ;-B. 15i. 15s. 9ld.
3. Three persons hired a pasture for 100 dol.; A. put in 40 oxen for 20 days, B. 30 oxen for 40 days, and C. 50 oxen for 10 days; How much, of the 100 dol. must each pay?

Ans. A. 32 dol. : B. 48 dol.; C. 20 dol.
4. Two men hired a pasture for 18 months, for 262 dol. A. at first, put in 100 sheep, and at the end of 8 months he put in 50 more ; B. at first, put in 275 sheep, and at the end of 4 months he took out 70 sheep: What inust each-man pay?

Sns. A. 96 d . 10 c .8 m ; B. $16^{\circ} \mathrm{F}$ d. 89 ce . 1 ms .
5. Three persons, in company, trade in the following manner, A. deposits in the stock f. 195 , 14 for 90 days ; B. ©. 179 , 18, 3 for 150 days ; C. $59,14,10$ for 330 days. At the ex.piration of the last term, they settle and find a gain of 6.364 , 18. and make a dividend; What does each man receive ? Ans. A. receives $£ .102,6$; B. $£ .148,1,1,2$; C. $6.114,10,6,1$.
6. By trading in partnership, Peter and John gain f.70. Into the stock, Peter put £. 40 , for 90 days, John put $£ .75$ for 120 days; What is each man's share?

Ans. John has 1.50 and Peter $£ 20$.
7. Three farmers rent pasturage, at $£_{21} 36,10,6$ the season. W. put in 23 . horses for 27 days ; Z. 21 , for 35 days ; and X. 16, for 23 days; What is the proportionate part of each man's debr?
Ans W. owes £. $13,3,1,2 ;$ Z. $£ .15,11,5$, and X. $£ .7,15,11$.

EXTRACTION OF THE SQUARE ROOT.

A SQUARE number ariseth from the multiplication of a number into itself; the number, so multiplied, is caHed the root ; thus, 4 multiplied by 4 ; produces 16 ; so 16 is a square number, and 4 is the root.

To extract the square root of any number, is to find anothernumber ; which, multiplied by. (or into) itself, produces the given number ; and after the root is found, such a multiplication is a proof of the work.

All the single square numbers, with their respective roots, are contained in the following Table.

Roots.	1	1	2	2	3	4	5	5	6	7	7

Rule.

1. When the square root of any number, not expressed in the table, is required, set a point over the place of units, another over the place of hundreds, and so on, over every se. cond firyure towards the left hand, which points shew the number of figures the root will consist of.
2. Find the nearest square number in the first, or left hand period, and subtract it therefrom, and place the root of the . square on the right of the given number, in the manner of a quotient in division, for the first figure of the root.
3. 'To the remainder annex the second period for a dividend; \cdots. . and on the left thereof write the double of the root; already sound, for a divisor.
4. Seek how often the divisor is contained in the dividend (reserving; always, the unit's place) and place the said. figure in the root, and like wise on the right hand of the divisor : mul. riply the divisor by the figure last found in the root, and subr tract the product from the dividend; to the ramainder join thepext period for a new dividend.
5. Find a new divisor, by doubling the right band figure of the last divisor, and bring it down; and from these find the next figure in the root, as directed last; continue the operation in the same manner, till you have brought down all the periods.

Nate 1. If there be decimals in the given number, it must Le pointed both ways from the place of units.
2. When the divisor cannot be had in the dividend, place a cypher in the root, and also on the right hand of the divisot.
3. If there be a remainder after extraction, add two cyphers and proceed as before, and the root, arising therefrom; will be a decimal.

Examples.

1. What is the square root of 18496 ?

18496(136 the root. A'newer.
1 .

69
266)1596.

1596:
2. What is the square root of 234,09 ? 23id, 0 (15,3 the Answer. 1
25)134

125
303)909

909
3. What is the square root of 6
${ }_{-}^{6}\left(2,449\right.$, Es δ_{2} the root.
4
44) 200

176
484) 2400

1936
4889)46400

44001
2399
4. What is the square root of 292,41 ?

Ane. 17,1.
5. What is the square root of ,002809?
6. What is the square root of 30138696025 ?
7. What is the square root of 213858 ?
8. What is the square root of 72745922 ?

Ans. , 053.
Ans. 173605.
Ans. 654.
9. What is the square root of 22071204 ?
10. What is the square root of 2268741 ?
11. What is the square root of 7596796 ?
12. What is the square root of, 00032754 ? Ans. 12062. \therefore Ans. 4693. Ans. 1506,23. Ans. 2756,928.

APPLICATION AND USE OF THE SQUARE ROOT.
To fnd a mean proportional between two numbers.
Rule.
Multiply the given numbers together, and extract the square root of the product, which root will be the mean proportional sought.

Examples.

1. Whet is the mean proportional between 49 and 64 ?

2. What is the mean proportional between 144 and 121 ?

Ans. 132.
3. What is the mean proportional between 6 and 24 : $\Delta n \mathrm{nc} \cdot 12$.
4. What is the mean proportional between 4276 and 842 ?

Ans. 1897,4.
To find the side of a Square equalin Area, to amy giren Superficies whatever.

Rule.
Find the content of the given Area, and the root is the side of the square sought.

Examples.

1. An acre of land contains 160 square rods; What is the side of a square equal in area thereto ?

$$
\text { í0) } 12,649 \text {, Ėc. Answer. }
$$

1

2. Suppose a general had an army of $567009^{\circ} \mathrm{men}$, and he would form them into a square; How many men must be in tank and file !

$$
\text { Ans. } 753 .
$$

3. Let 8192 men be formed into an oblong, so that the nuimber in rank may be double the file.

Ans $8192 \sqrt{2}=4096 r:=64$ in file. $64 \times 2=128$ in rank.
4. Suppose a genitleman would set out an orchard of 864 trees, so that the length shall be to the breadth as 3 to 2; How many trees must there be in length, and how many in breadth?

To resolve any question of this nature; say, as the ratio in length is to the ratio in breadth, so is the number of trees to a fourth number, whose square ropt is the number in breadth ; then, as the ratio in breadth, is to the ratio in length, so is the number of teces, too fourth number, whose root is the number in length.
As $3: 2:: 864: 576$ and $576=24$ pumber in breadth.
As $2: 3:$: $864: 1296$ and $\sqrt{ } 1296=36$ number, in lengith.
Note. The square of the bypothenuse or the longest side of a right angled triangle, is equal to the sum of the squart s of the other two sides; - and consequently, the difference of the
squares of the hypothenuse and either of the other sides, is the square of the remaining side.
5. A line 81 feet long, will exactly reach from the top of a fort, on the opposite bank of a river, known to be 69 feet broad: The height of the wall is required !

$$
\begin{aligned}
& 81 \times 81=6561 \text {; and } 69 \times 69=4761 \text { : then } 6561- \\
& 4761=1800 \text {, and } \sqrt{ } 1800=42,426 \text { feet, the } \cdot \text { Ans. }
\end{aligned}
$$

6. Two ships sail from the same port, one goes due east 150 miles ; the other due north 252 miles ; How far are they asun-: der?
$150 \times 150=22500.252 \times 252=635044$, then $63504+22500=86004$ and $\sqrt{ } 86004=293,26$ miles the Ans,
7. A ladder, 40 feet long, may be so planted, as to reach a windou 32 feet from the ground, on one side the street ; and without moving it at the foot, will do the same by a window 21 feet high on the other side: How wide is the street ?
$40 \times 40=1600$. $33 \times 33=1089.21 \times 21=441:$ then $1600-1089=$ 511 , and $\sqrt{511}=22,6$, and $1600-441=1159$, and $\sqrt{ } / 1159=34,04$: then $23,6+34,04=56,64$ feet, the Ans.
8. If a man travel 40 miles due north, and then turn and travel 30 miles due west; How far is he from the place where he first scarted?

Ans. 50 miles.
The area of a cirde given to find the diameter.
Rule.
Multiply the square root of the area, by 1,12837. The product is the answer.
Kequired the length of a rope, having one end fastened in the ground, and the other tied to a horse's tail, so that he may eat an acre of grass, allowing the horse and his tail to be $5 \frac{1}{2}$ yds.

Ans. 6,136.
The area of a circ'e given to find the circumference.
Rule.
Multiply the square root of the area by 3,5449. The product is the circumference.

1. What is the circumference of a circle, wbose area is 12 rods ? Ane $24,5596$.
2. What is the circumference of a circle, whose area is 320 rods!

EXTRACTION OF THE CUBE ROOT.

TO extract the Cube Rof of any number, is to find another, which multiplied by itself, and that product by the number found, produces the number given for extraction.

All single cube numbers, with their respective roots are contained in the followins: Table.

Rule.

1. Separate the given number into periods of three flyures each, by placing a point over the unit's place, and every third figure to the left hand of the unit.
2. Seek the nearest cube in the left hand period, and place. its root in the quotient.
3. Subtract the cube, thus found, from the said period, and to the remainder bring down the next period, and call this the dividend.
4. Multiply the square of the quotient by 300 , and call it the triple aquare, and the quotient by 30 , and call it the rrifle quofient, and the sum of all these call the divisor.
5. Seek how often the divioor may be had in the dividend, and place the result in the quotient.
6. Multiply the trips'e square by thè last quotient figure; and write the product under the dividend, maltiply the qqaire of the last quotient figure by the triple quotient, and set this pros. duct under the last; under all set the cube of the last quotient Agure, and call their sum the sabtraherad.
7. Subtract the suberahend from the dioidend, and to the remainder bring down the next period for a new atroicend, with which proceed as before, and socontinue till the whole is finished.

Note.-Observe the same rules for pointing, when there-are deoimals, and continuing the operation, as in the aquare root.

> Examples.

1. What is the cube root of 444194947 ?

$$
\text { Ans. } 763 .
$$

$$
44194947 \text { (} 763 \text { the root. }
$$

$$
\text { Ans. } 703 .
$$

$7 \times 7 \times 7=343$
1st. divis $=14910) \overline{101} 194=1$ st. dividenid. $95976=1$ st. sultrahend.
2d divis. 1735080$) \overline{5218947}=2 d$ dividend.

$$
\begin{aligned}
& \begin{array}{r}
7 \times 7 \times 300=14700=1 \text { st. triple square. } \\
7 \times 90=210=1 \text { st. triple quotient. }
\end{array} \\
& \begin{aligned}
7 \times 7 \times 300=14700=1 \text { st. triple square. } \\
7 \times 50=210=1 \text { st. triple quotient. }
\end{aligned} \\
& 14910=1 \text { st. djejsor. } \\
& 14700 \times 6=88200 \\
& 6 \times 6 \times 210=7560 \\
& -6 \times 6 \times 6=216 \\
& \because \quad 95976=1 \text { st. suEtrahend. }
\end{aligned}
$$

2. What is the cube root of 303464448 ?
3. What is the cube root of 436036824287 ?
-4. What is the eube root of 41,063625 ?
4. What is the cube root of , 002197 ?
5. What is the cube root of 239017.
6. What is the cube root of 5735339 ?
7. What is the cube root of. 32461759 :
8. What is the cube root of 122615327232 ?
9. What is the cube root of 219365327791 ?
10. What is the cube root of 36155,027576 ?
.12. What is the cube root of 15926,972504 ?

Ans, 672.
ins. 7583.
Ans. 3,45:
Ans , 13: Ans. 73.
Ans. 179.
Ane 319.
Ans 4968.
Ans. 6031.
Ans. 33,06.
Ane 25,16.

APPLICATION AND USE OF THE CUBE ROOT.

The use of the Cube Root is to find out the dimensions of like. solids, as globes, cylenders, cubes, \&ic.

Rule.

As the content, or weight, of a given solid, is to the content, or iveight of another like solid; so is the cube of the side or diameter of the one, to the cube of the side or diameter of the other. Then the cube root of the quotient will be Che length of the side, or diameter required.

Examples.

1. If a bullet that weighs 72 lb . be eight inches in diameter, What will be the diameter of that bullet that weighs 9 lb ?

The cube of 8 is 512;
then as $72: 9: 512$
9
4608(64 ; The cube root of 64 432 is 4 , the diameter

288
288.
2. If a ship of 100 tons be 44 feet long at 'the keel, of what length must the keel of a ship be that carries 220 tons?
Say, as $100: 220::$ so is the cube of 44 , viz 85184, , to 187404,8 ; whose cube root is 57,226 feet, the lengith of the keei sought.

To find the length of the Masts of a ship.

Rule.

Two thirds the length of the keel, and the breadth of the beam is the length of the mainmast; therefore multiply the length of the keel by 2 , and divide the product by ihree, then add the breadth of the beam to the quotien!, and the total will be the leigth of the mainmast.

ERITHMETIC.

Examples.

1. Suppose a ship to be 108 feet by the keel, and 40 feet ity the beam, What is the length of her mainmast?

108 keel.

2
3.) 216
$72=-\frac{1}{3}$ of the keel.
$40=$ the breadth of the beam.
$112=$ length of the mainmast. Ans.
2. If a ship be 84 feet by the keel, and 31 feet by the beam; What is the length of her mainmast?

Ans. 87 feet.
To find the length and thicknere of Maste and Rarch.

Rule.

Add the breadth of the beam, and the depth of the hold, in feet, together, divide the product by 1,5, and the quotient will be the lengtli of the mainmast in yards.

Examples.

1. If the keel of a ship be 73 feet in lerigth, and the breadth of the beam 28,5 feet, and the depth of the hold 12 feet; What is the length of the mainmast?
$f t$.
28,5 breadth of the beam.
12, depth of the hold.
1,5)40,5(27 yärde, Aniswer.
30
105
2.

To find the thickness of the mast, baving the length given, may,
fl. in. thick: $f l$.
f.
$8.28:=81$
81
28
84) $\frac{224}{2268(27}$

168

- 588

588

To find a Ship's Bxpthen:

The forma of ships are so various thiat no general rule can be applied to ans wer all virieties; however, the following rules
are practised.

- Rute.

1. Multiply the breadth, and half the breadth, at the man beam, together, and that product by the length; divide the last product by 94, and the quotient is the tons.
2.. Divide the continued product of the length, breadth and depth, in feet, by 100, for ships of war, and 95 for merchantships, in which nothing is allowed for gims, \&c. and the quotient is the tons.
2. Take the length, from the sternpost to the upper part of the stem ; subtract turo thirds of her breadth from that length ; multiply the remainder. by the whole breaduh, and that product by half the breadth; in feet, and divide by 1,00 for war, 94 for merchant-ships:
3. The weight of a ship's burthen is half the weight of water she can hold.

Examples.

1. What is the tonage of ahip, whose length is 97 fiet, breadth 31 feet; and dépth $15 \frac{1}{2}$ feet?

The proportions of NoAR's ARK were as follow, viz. length of the keel 300 feet, breadth by the midship-bcam 50 feet, depth
in the hold 30 feet; What was its burthen as a man of war, and merchant ship. $300 \times 50 \times 30=450000 \div 100=4500$ tores ase man of wair. $450000 \div 95=4736 \frac{80}{5} \frac{0}{5}$ tons as a merekant ship.

Extraction of the Biquadrate Root.

By discovering a number, which, being involved 4 times in. to itself, produces another number, is the extraction of the Biquadrate Root.

Rule.

First extract the square root of the given number, and thei extract the square root of that square root, and it will give the biquadrate root.

Examples.

1. What is the biquadrate root of 27 ?

Ine: 531441.
2. What is the biquadrate root of 76 ?

Ans. 33362176.
3. What is the biquadrate root of 275 ? Ans. 5719140625.
4. What is the biquadrate root of 531441 ?
5. What is the biquadrate root of 33362176 ?

Ans. 27. :
6. What is the biquadrate root of 5719140625 ? Ans. 76. Ans. 275.

SUPERFICIAL, OR BOARD MEASURE.

THE dimensions of boards, glass, \&c. are generally taken in feet, inches and parts.

Rule.

If the board be regular, multiply the length in inches by the breadth in inches, and divide the product by 144, it will give the answer in feet: Or, if you multiply the length in feet by the breadth in inches, and divide by 12, it will give the answer in feet.

Exampigs.

1 How many square feet in a board, 18 feet long, and 13 inches wide?

Atts. 19ft. $\frac{6}{12}$ or, $19 \frac{1}{2}$ feet.
 Breallh 13 inches: 54
-18
12)234

196
2. How many square.fect in a board 15 . feet 4 inches in length, and 9 inches in breadtif ?
f. $3 n$.

154 Jength = 184 insheo.
12 - Breadet 9
184

```
    144)1656(112 feet,the sunswep.
                            1 4 4
                    216
                                    144
                        72=-\frac{x}{2}\mathrm{ of 144:}
```

If the:boand be wider at one end than the other, then take the breadth in the middle, or add the measure of both ends together, and take half the product for a mean breadth, which mulsiply by the length.
3. How many square feet in a board 10 feet long, and 13 inch: es wride- at one end, and 9 inchps. wide. at the other?

4. How many square feet in a beard, 14 feet long, ana 15 in: ches broad at one end, and 12 inches at the other?

CROSS MULTIPLICATION.

THIS Rule is made use of by Workmen and artificers, in casting up the contents of their works.

Dimensions are generally taken in feet, inches, \&c. as follow, viz.

1 foot contains 12 inches or primes,
1 inch, or prime, contains 12 seconds, (! 1)
1 second contains 12 thirds, \quad (11) \&c.

Rule.

1. Write the corresponding denominations of the multiplies under the multiplicand.
2. Multiply each term in the multiplicand; beginning with the lowest, by the highest denomination in the multiplier, and write the result of each under its respective term, obselving to carry an unit for every 12, from each lower denomination to its next superior, and so for other numbers.
3. Multiply, in the same manner, all the multiplioand, by the primes, or second denomination, and set the restit of each term one place removed to the right hand of thase in the multiplicand.
4. Proceed in the same manner with the seconds in the multiplier, setting the result of each term two places to the right hand of the multiplicand; and so of others.

Examples. ${ }^{1}$
f. ft. 'or in. Here I begin with the 4, and say 4 times 3 are 12; set down 0 and carry 1; then 4 times 7 are 28, and 11 carry make 29, which I set down.

Next I begin with 7, and say 7 times 3 are 21 , set down 9 in the place of seconds and carry 1 prime, Product. 33 2 9 or inch; then 7 times 7 are 49, and 1 make 50 inches, or 4 feet 2 inches, which set down; then add them together, and the product is 33 ft . 2 in . 9 sec .
2. If a board be 17 feet 7 inches long and 1 foot 5 inches wide, How many square feet does it contain?

3. How many square feet in 10 boards, each 13 feet 8 inchea in length, and 1 foot 3 inches in breadth ?

GLAZIERS' WORK BY THE FOOT.

IF the windows be square, multiply the length by the breadth, the same as in board measure;

Note:-If the windows are arched, or have a curved form, no allowance is made on account of the extraordinary trọuble, waste, \&c-: The length is taken from the highest part of the arch down to the bottom.

Examples.

1. If a window be 4 feet 5 inches in length, or height, and 2 feet 9 inches in breadth, How many square feet does it contain ?

2. There is a house with 3 tiers of windows, and 4 windows in a tier ; the height of the first tier is $6 \mathrm{ft} \mathrm{.}^{\prime}$: of the second $5 \mathrm{ft} .9^{\prime}$; of the third $4 \mathrm{ft} .6^{\prime}$; and the breadth of each is $3 \mathrm{ft} .5^{\prime}$; How many square feet in the whole? Ans. 173ft: 4' $9!!$

$$
\begin{array}{cc}
-A . \\
6 & 8 \\
5 & 9 \\
4 & 6 \\
\hline 16 & 11 \\
3 & 3=n u \text { en. of tiers. } \\
\hline 50 & 9
\end{array}
$$

CARPENTERS' WORK.

To know how maxy boards it zoill take to cover a frame.

Rule.

1. For the body of the frame. Add the length and breadth of the frame together, and then double the sum, of multiply by 2; then multiply that product by the height, and it will give the content.
2. For the gable ends. Multiply the beight of one gable end by its breadth, and it will give the content of both.
3. For the roof. Multiply the 'length of both rafters, added together, by the length of the frame, and it will give the content.

Example.

How many boards will cover a harn that is 50 feet lopg, and 30 feet wide ; and the height of the gable ende 13 feit, and $11 . i \cdot$ fers 20 feet each; and the body of the frame 15 feet in height

50 ft length.
30 ft . breadth.
$\overline{80}$
2

160
15

800
100
2400 ft. for the bodly.
390 ft. gable ends.
2000 ft roof.
4790
Gable end 13 ft. height:
30 fi. brewalth.
340 ft . for beth.
20
20
40 ft. both ratierte.
50 length of the framas
2000 ff . for the roof.

Note-The rafters are, generally, two thirds of the breadth of the frame in length.

2t know how many shinglesit will take to covier a róof.

ETesiz.

Maltiply the length of both raftorn, added together, by the. length of the building, and that prodact by 144; and if will give the content of the yoof in square inches : Then multiply .the width of a shingle by the breadth of the course for a divisor; by which divide the content of the roof, and it. will give the number of shingles.

ExAMble.

How many shinglẹs will cover 2 bart 50 fëet lonǵ, and 20 feet rafters, allowing eich thingle to be 4 inches vide; and cach course 5 inches?

TXMBETMEASVRE:

11

Arr. 14400 shingles
288000 sq. in. in the roof.
Note.-Ir measuring roofs, no deduction is made for-skylights, chimney-shafts, \&c.

In measuring flooring, from the content of the whole floor in feet, take the content of the vacancies for the stairs, hearths, \&a. in feet, and the remainder is the content.

To know the contents of the ceiling of a room, multiply the number of feet round the room by the height ; from which subtract the doors and windows, and the remainder will be the content.

WOOD AND TIMBER MEASURE.

To measure zoood.
128 feet make a cord of wood, or bark; that is, 4 feet high, 4 feet wide, and 8 feet long.

Ruze.

Multiply the length by the breadth, and that product by the height, and divide the last product by 128 , and it will give the number of cords:

Examplis.

1. If a load of wood be 8 feet 4 inches long, 3 feet 8 inches wide, and 4 feet 6 inches high, How many cubic feet does it contain, and how many cords ?

2. If a load of wood be 8 feet long, 4 feet vide, ape 2 feet 6 inches high, How many cubic feet, and feet represeating parts of a cord 1
$8 \quad 16) 80\left(5\right.$ feet or, $\frac{5}{8}$ of a cordh are.

32.
2.6
64
16
80 cubic feet.

J. How many cubic feet, cords, and feet representing parts of a cord, are there in 2 load of wood, 9 feet 4 inches loiga 3 . feet 8 inches yide, and 4 feet 9 inches higfi?

16268 cubic feed
4. How many cubic feet, cords, and feet repropenting parts of a cord, are there in a load of wood 9 feet long, 3 feet 5 inches high, and 4. feet 3 inches wide ?
 end to end
Rus.5.
Find the area at one end, by mukiplying half the circumferencer by half the diameter ; multiply that by the Yength; and divide the last product by 144, it will give the contents.

- Note- - To find the circumference of a circle, say, 297 : is \% 22 : 7 min the given diameter: to the civeumferente.

Exaypiess:

1. How many nolial faet gre there in a round stick of timber of equal bignesf frome siatiostid, whose diameter in 14 imebers. and length 20 feet?
```
AE:7:22:: 14
        14
        88
        22
        7)308
        44-acircum,
```


$154=$ area of one and.
$20=$ leng th.
144) 3080 ($21 \frac{7}{28}$ feet, Arres.
288
200
144
$56=\frac{9}{18}$.
2. How many solid feet are there in a round stick of timber, of equal bigness from end to end whose diameter is $20 \frac{3}{2}$ in: ches, and length 30 feet ?

As $7: 22:=20,5: 64,42=$ circuim.
$32,21=h a l f$ circum.
$10,25=$ half dian.

$$
330,1525
$$

$30=$ length.
144)9904,5750(68,781 feet Anv.

To find the solid contente of a tapering stick of timber, whethor squtire or round, wiken one end is a point.
RUXI䀋

Multiply the area of the great end, by one thitat of the lemgth.
Examples.

1. How many solid feet in a tapering round stick of timber, 21 feet long, 28 inches diameter at one end, and a point at the other?

As $7: 22:: 88: 88$ cir. $\quad .44=\frac{7}{2}$ circum. $\quad 14=\frac{\frac{1}{2}}{2}$ diam. \quad.
616 marea at one cint.
$7=\frac{1}{3}$ of the tengeth.
144)4312(29,94 feet. Ans.
2. How many solid feet are there in a tapering squase stick of timber, 30 feet long, 12 inches square at one end, and a point at the other ?

$$
\begin{gathered}
\frac{12}{144} \\
\frac{10}{104)}=\frac{5}{3} \text { of the length. } \\
\hline 1440(10 \text { feet. Ans. }
\end{gathered}
$$

To find the contents of a tapering round stick of timber, when the small end is not a point.

Ruse.

Multiply each diameter into itself; multiply one diameter by the other; multiply the sum: of these products by the length; annex two cyphere to that product, and divide by 382 ; the quotient will be the solid contents.

Example.

How many solid feet are there in a round stick of timber whose diameter at one end is 18 inches, and at the other end 12 inches, and length 20 feet?
$18 \times 18=324$
$12 \times 12=144$
$12 \times 18=216$
$\overline{684}$

684
$20=$ length.
$382) 13680(3581 \div 144=24,8$ feet. Ans.

Tb find the selid contents of a zapering oguare stick of timber, when the small endis not a point.

Rule.
Multiply each end into itself separately ; multiply one end in. to the other, and then multiply the sum of these products, by: one third of the length, and the preduct will be the solid contents.

Example.
How many solid feet are there in a lapering square stick of timber, whose largest end is 15 inches, and least end 9 inches, and length 24 feet ?

To find how sany solid feet a round stick of timber, equally large from end to end, woill cositain, when made square.

Rule.

Multiply half its diameter into itself, and thaf product by twice its length.

Example.

If a round stick of timber, were hewn square, which is 20 feet-long and 18 inches dianeter, How many solid feet would it contain?

CASK GAUGING．

AMONG the many diffewt relles for gauging，the followt ing is as extet an my．
 \section*{Hutz．}

Take the diameter at the bung and head，and length of the－ cask：Subtract the head－diameter fiotr the bung－diameter， and note the difference．

If the staves of the cast be mutch curved or bulging between the bung and the head，multiply the difference by, 7 ：if not quite so much curved，by ， 65 ；if they bulge yet less，by ， 6 ； and if they are almost or quite strait，by ， 55 ，and add the pro－ duet to the head－diameter；the sum will be a mean diameter：

Square the mean diameter，this found，then multiply it by the length；divide the product by 359 for ale or beer gallons， and by 294 for wine gallons．

Note 1．－To measure the length of the cask；measure the length of the stave．；then take the depth of the chimes，which， with the thickness of the heads（which are 1 inch， $1 \frac{1}{2}$ inch or 2 inches，according to the size of the cask，）being subtracted from the length of the stave，leaves the length within．

Note 2．－In taking the burg－diameter，observe by moving the rod backward and forward，whether the stave，opposite the bung，be thickes or thimmer than the rest，and if itrbe，make al－ lowance ascordingly．

Example．

A cask，whose bung－diameter in 30 inches，head－diameter 25 inches，and length 40 inches，How many ale and vine gallons will it contain？

$$
\text { Bung-diameter }=30
$$

Head－《iameter $=25$

By the Slibing Rule.

On D. is 18,94 , the gauge-point for ale or beer gallons, marked A. G. and 17,14 the gauge.point for wine gallons, marked W_{r} i G. Stt the grauge-point to the length of the cask on C. and agrainst the mean diameter, on \mathbf{D}. you will have the answer in ale or wine gallons according to which gauge-point you make use of.

By the Scale.

Take the extent from the gauge-point to the mean diameter; set one foot of the dividers in the length, and turning them twice over, they will point out the content.

TO GAUGE ROUND TUBS, \&c.
 Rule.

Multiply one diameter by the other, and to thiat product add one third of the square of their difference ! multiply this sum by the length, and divide by 359 for beer, and 294 for wine gallons.

Example.

What is the content, in beer and wine gallons, of a round tub, whose diameter at the top; within, is 40 inchen, and at the bottom 34 inches, and the perpendicular height 36 inches ?

231) 192000 (831,12 wine gal.

Note.-The content of any vessel, in feet, gallons, and bushels, may be thus found : Measure the inside of the vessel, according to the.rule of the figure, and find the content in cubic inches, then,

Fivide by $\left\{\begin{array}{l}1728 \\ 282 \\ 231\end{array}\right.$ $\left\{\begin{array}{l}\text { and the grio. }\left\{\begin{array}{l}\text { Cubic feet. } \\ \text { lisent will be or beer gal. } \\ \text { inhecontent in }\end{array}\right. \\ \text { Wine gallons. } \\ \text { Bushels. }\end{array}\right.$
To exercise the pupil, we shall exhibit some more examples, under Superficial Measure, Cross Multiplication, \&c.

Examples.

1. Required the value of a marble etratum, 5 ft . 7 in . in length, and 1 ft .10 in . in breadth, at 9 dol . per foot. $\mathrm{Ans}^{\text {. }} \mathbf{1 0 \mathrm { dol } . 2 3 \mathrm { c } .}$
2. What will it cost to glaze 'a house, having three tiers. of windows, and three in a tier. Of the first tier, the height is $7 \mathrm{ft} .10 \mathrm{in}_{4}$; of the second, $6 \mathrm{ft} .8 \mathrm{in} . ;$ and, of the third, 5 ft .4 in . The breadth, 3 ft .1 kin ? The glazing per foot being $14 d$. Ane. £.13, 11, 10, 2.
3. What are the solid contents of a stone, 7 ft . 6in. long ; 3 ft . 3 in . broad, and 1 ft .10 in . in thickness ? $A \pi s .44 \mathrm{ft} .8 \frac{3}{12} \mathrm{in}$.
4. The walls of a painted room, are, in length 97 ft . 8 in . , in height, 9 ft : 10 in . What was the price of painting at 2 s .8 d . 3qrs. pep yard ? Ans. ©.14, 11, 1.

5 In 173 ft . 10 in . in length, and 16 ft .7 in . in breadth, Howm many squares ?

Ans. 18-squares, 39ft. 8in. 10parts.
6. A house measures within the walls, 52 ft . 8in. in length, and 30 ft .6 in . in breadih; the length of the rafters is $\frac{3}{4}$ the breadth of the building. . What will it cost, per square, to roof the house ?

Ans. $\mathbf{E} .12,12,11,3$.
7. What is the tonage of a single decked vessel, whose length is 60 ft . ; breadth, 20 ft , and depth, 8 ft . . Ans. $101 \frac{5}{95^{\circ}}$
8. What is the tonage of a ship, 74 ft . by the keel, and 26 ft . 6 in , by the beam?

Aris. $273 \frac{3}{9} \frac{8}{8} t o n s$.

- POSITION.

To discover, by false or supposed numbers, the true one, is . the intention of Position. It is single and double.

SINGLE POSITION.

By using one supposed number, and working with it as the true one, the real number is discorered, by the following.

Rule.

As the total of the errors is to the given sum, so is the etppposed number to the true number.
N. B. To prove the woik, and together the soveral parts of the result, and if it agrees with the given sum, it is right.

Examptes.

1. An apple woman being asked the number of apples in her basket, replied, that if she had as many, half as many, and one fourth as many more, she should have 88, How many apples were there in her basket?

Suppose 40	de $110: 88:=40$	
As many 40	40	. 32
$\frac{\pi}{2}$ as many 20		32
4 as many 10	11)0)352(0)(32	16
$\overline{110}$	33 Ans.	8
	. 22	88 proof

2. A sharger being asked the number of dolizes in his trank, repliod, that if $\frac{1}{4}$ and $\frac{\pi}{6}$ of them were alded together, they would make 54. The number of dollars is required. Ran. 72.
3. A gentleman bougbt a sieigh; harness. and span of horses for $£ .120$. For the horses he gave twice the price of the harness, and for the sleigh, twice the price of the horses and barmess, How many poundu did he give for each?
Mine. for the horses, $2.26,13,4$; for the hamess, $-2.13,6,8$; -fer the sleigh; $£ .80$.
4. A money lender loaned an unknown sum of money, at:6 per cent. At the expiration of 10 years, he received for principal and interest, E.1200, How many pounds were loaned?

An\& 8.750.
5. A beef seller wat aiked, whither he was.driving his 30 fat oxen; I have not 30 ; he replied; but if I had as many more, $\frac{1}{2}$ 20 many moje, and 5 more, I should have 30 , How many orein had he in his drove ?

Ans. 10.

DOUBLE POSITION

IS the using of two supposed numbers; and if bothr prove false, they, with their errora, must be managed according. to these rulee:

Rube 1.
Blace aach error against its respective pusition.
2. Multiply them cross-wise.
3. If the crosses are alike ; that is, both greater, or both less than the given number, take their difference for a divisor, amd :the difference of their products for a dividend. But if they be unlike pounimst take their sum for a divisor, and the sum of theis products for a dividerid . The quotient will be the ana,wer.

GHOMETRICAI DBTINTIONS.

12]

Examples.

-1. Thompson asked Gregory tue price of his chaise. Gregory answered, had it cost-me 3 times as much as it did, and 15 dollars more, it would have cost me 300 dollars. . What did it cost?
 and but one lid to both, weighing 100z. If the lid be placed on the less ianzard, it will double the weight of the greater. But if placed on the greater tankard, it will be thrice as heavy as the less. Required the weight of each.tankard.

Ans less tankard, 60 z. ; greater tankard, $80 z$.
3. Three fishermen, in company, caught 196 liaddock. Falling into a contention, each seized as many as he could, A. seized on a certain number : B. on as many as A. and 16 more; and C. on the sixth part of both their numbers. On How many did each seize ?

Ans. A. 76 ; B. 92 ; and C. 28.
4. Robert, stealing peaches, was apprehended by the owner's son, and to still him, delivered up $\frac{1}{2}$, the son gave him back 20. Meeting with John, he was robbed of half he had lefi, and John -gave him back 8. Witliam soon met him, and forcibly takes eway half of what he harl, but returns one. Arriving at a safe place, he counted his peaches, and found 26 only, How many did he steal?

Ans. 120.

GROMETRICAI DEFINITIONS.

1. A point is that which has no parts, being of itself incivisible. As, A.
2. A line has length ; but no breadth. As,
3. The extremities of lines are points. . As,
4. A right line is the shortést, that can be drawn between any two points. $\mathrm{A}, \mathrm{A}-\mathrm{B}$
5. If it be not the shortest, then it is called a curved line. As. $A \sim B$
6. Superficies, or surface, is length and breadth, without any thickness.
7. The inclination of two lines, meeting one another, or the - opening between them is called an angle. As, 2
8. If a right line fall upon another, so as to incline to neither side, and making the angles equal : then the angles are called right angles; and the falling-line is called the perpendicular. As, -
9. An obtuse angle is greater than a right angle : An acute angle is less.
10. If a right line be fastened at one end, and the other end be carried quite round, then the inclosed space is called a circle, and the curve line, described by the other end of the line is called the circumference, or periphery.
11. The place where the first end is fixed is called the centre ; and the describing line, the semi-diameter, or radius.
12. The diameter of a circle is a right line drawn through the centre, and terminates on each side of the circle. And it divides the circumference and circle into two equal parts called the semicircles.

1s. The circumference of every circle, is supposed to be divided into S 60 equal parts, called degrees; and each degree; Tin^{2} to 60 equal parts, called minutes ; and each minute, into 60 equal parts, called seconds, and these into thirds; fourths, \&c.
14. Parallel lines are equidistant from each other.
15. A figure, having three equal sides, is called an equilateral figure: Having two sides equal, Isaseles: Having three sides unequal, scalene.
16. Any four sidéd figure is called a guadrilateral figure.
17. Quadrilateral figures, having opposite sides parallel, are called parallelograms.
18. A patallelogram having its opposite sides equal, and all its angles, right angles, is called a square.
19. A parallelogram, having opposite sides equal and angles right, is called an oblong.
20. A rhombus is a parallelogram of equal sides, and has its anstes either obtuse or acute.
21. A rhomboides is a parallelogram whose opposite sides arit equal and angles obtuse, or acute
22. A quadrilateral figure, that is not a paralielogram, is callid a trapezimm.
23. Figures, having more than four sides and four angles, ase called polysons; and they often take their name from the number of augles; as pentagon, five angled; hexajion, six angled ; septawoin, sever angled; octagon, eight angled, \&ce.
N. B. Let the Instrictor illimtrate eado definition, by exemples.

GEOMETRICAL PROBLEVSS.

Problem 1.
Toinrect a perpendicular near the midile of a given line, as from .1: Set one foot of the compasses in the giv-. en point, Λ, open them to anydistance at pleasure as to B; and with that extent make the marks B and C. Set one foat of the compasses at B at anyextent ahove half the dis: tance from B to C, deseribe an arch above
 the line, and with the same extent, and one foot in C, describe an arch crossing the former; draw a line from the insersection of the arches to the given point A; which will be the perpendicular required.

Problem'2.

To divide a line, as $A B^{\prime}$ ' inte two equal parts.
Set one foot of the compasses in the. point A, \& opening: them beyond the mid. dle of the line, describe arches above and below the line: with the same extent, set one faot in the point B, and descrioe. two arches crossing the former : draw a line from the inter-
 section of the arches: sbove the line, to the intersection below the line, and the linis. A B, will be divided fato two equal parts.

$$
\text { Probleme } 3 .
$$

To erect a perpendicular upon, the and of a line.
Set one foot of the compasses in the given point B, open them to any convenient distance, and de-seribe the arch CDE; set one foot in C, and with the same extent, cross the arch at D; with the same extent cross the aroh atoin from D to E; then with" one foot of the compasses in $D_{\text {p }}$ and with any extent above the half A of.D.E. describe an arch a \& take

the compassea from D, and ke: ping them at the same estent with one foot in \mathbf{E}, intersect the former arch as from thence dray a line to the point B, which will be the perpendicular required.

$$
\text { Problem } 4 .
$$

From a point assigned, to let fail a perpendicular upon a given líne.
With one foot of the compassasin the point a extend the other so as to reach beyond the line $A B$, and describe an arch to cut the line A B in C and D ; set one foot of the com. passes in C, and with any extent above half 0 D, describe an arch b, keeping the com-
passes at the same extent, set one foot in D, and intersect the arch b; through which intersection, and the point a, draw e E, which will be the required perpendicular.

$$
\text { Problem } 5 .
$$

To diaw a line paraliel to a given line A B.
Sct one foot of the compasses in any part of the line, as at c; ex tend tie compas-ees-at pleasure,
 unless a distance
be assigned, and describe an arch b; with the same extent, in some other part of the line $A B_{1}$ as at e_{2} describe the arch a; lay a ruler to the extremities of the arches, and draw the line E F, which will be parallel to the line A.B.

Problem 6.
To form a triangle with three given lines, provided any two of thetn be longer than the third.
Let A, B, C, be tle
three given lines; draw.
a line, $A B$; at pleasiare;
${ }^{A}$

take the line C in the compasses, set one foot in. A, and with the other make a mark at B ; then take the given line H. in the compsises, and setting one foot in A, deacribe an arth at C: then take the givien line A, in your campaisien, setting one foot in B, intersect the arch

C in C ; lastly, draw the lines A C and BC, and the triangle will be formed:

Problem 7.
To make arsquare, hawing equal sidos, equal to any given line."
Let A be the given line: A draw a tine A B, equal to D the given line, from B raise a perpendicular to \mathbf{C}, equal to A B, with the same ex-: tent, set one foot in \mathbf{C} and ${ }^{\prime}$ describe the arch at D ; also with the same extent; set one foot in A and intersect the arch at D; lastly, draw the lines $\mathbf{A} \mathbf{D}$ and \mathbf{D}. C, and the square will be completed.

A parallelogram, or long square, may be constricted in like mamer, by attending to the difference bet ween the length and, breadth.

Problem: 8 :
To deseribe a circle; which shall pass thirough' any three given, points, which are not in a straight line.
Let ABC be the three giver points through which the circle is to pass. Join the points A B and BC with. fight lines, and bisect these. lines ; the point D, where the bisecting lines cross each other, will be the cen. tre of the circle required. Place one foot of the com. passes in D , extending the other to either of the given
 pointsis and the circle described by that radius, will pass through all the points.

Problem 9.

To describe the Carpenter's ovol:

Take one fourthof the

 intended length of the oval, in the compasses, and demcribe a circle at pleasure, and thro the centre thereof, at 1_{1} draw a line as A B. On the two points where the circumference of this circle cuts the line A.B. as centres, describe circles with the

draw d c perpendicular to A B, passing through the censre difile middle circle From the pointreand draw $c e, c h$ and $d f d . g x$ set one foot of the compupees in d_{y}, and entend the other. to sintescribe the arch $\dot{g} f$; with the same extent, and one foot in q describe the arch h e; these arches, with the circular parts, willsome the oval required.

Problem 10.
To describe a rhombues
Make the angles. ACB of any magnitude, at pleasure ; then takiog the length of one of these lines in the compasses, get one foot in $\mathbf{\Lambda}$, and deucribe an arch, as at D; then with the same extent, and one foot in B; deacribe an arch intersecting the other; listly, from the internecting of the axchea draw the lineen A.D. apd D.B, nind in will be completed.

Promlem 11:

$$
\dot{\text { tib make }} \text { hexagon, or six-sided figure }
$$

Drave a sircle at pleakure, thin withput altgring the extent of the compasses, mark out the hesagon required round the circle ; for the semidiameter of any circh is the side of the greategt heragon that can be made' within the same circle. By this method coopers find aut the bigness of heads for their casjs ; , that is, they take a sixth past of the circuimfers. enicis of the finide of the chimes, to deacribe the circle fat the head.

Probleit 12.

-1.2 ma,make an angle to cortuin any number of degrese.

- Node -Te do this it is meckssary to haye a soale, of which there

 ends Cho. white erovie tifies of chords. for laying d ρ wn and me paring angles. At the leat haud of the liat of chorcon and ofrtat
cther side of the scale, are rites of equal pairts for layites down dhains and links, rods, \&c. It in required to make an angle that shall contain 45 dogreesf.
Draw a line at pleasure, as A B, then setting one foot of the compasses in the brass centre at the beginning of the line of chortts, see that the other fall just on 60 degrees, or the other lurass centre: With chat extent set one foot in A, and describe the A arch CD. Thentake

from. your line of chords 45 degrees, and setting one foot in D_{s} make g mark upon the arch at C, through which draw the line. AE: So shall the angle AEB be 45 degrees. If ygu would erect \% perperidicular. by the line of chords, upon a given line, it is na more than to make an angle that shall contain 90 degrees.

The reason why you are to take 60 from the line of chords to make your arch by, is, because the chord of 60 degrees is the se: midiameter of a circle, whose circumference is divided into 360 . equal parts.

Problem 13.

To make a regutar Polysen or any figure-of 5,$6 ; 7,8$, or more àides, by the line of chorde.
Divide 360 , the number of degrees contained in a circle, by the mumber of sides you would have your figure to contain ; the quoi tient taken from the line of chords will be one side of such a figure

To make a pentagon, or a figure of five sides; divide 360 by 5 ; the quotient is 72 , equal to one side of a pentagon.

Take 60 degrees from the line of chords, and describe a cirle; then take 72 from the line of chords, and beginning at any part of the circle, set off that extent round the circle, then draw lines between those marks. and the figure will be completed. And so of any other Polygon, be the number of sides what they will.

LAND MEASURE, OR SURVEYING. :- to

Note. 12 inches make.one foot, 3 feet one yard, $5 \frac{1}{2}$ yands, or $16 \frac{7}{2}$ feet, one rod, 4 rods one chain of Gunter's, eighty chains or 320 rods, one mile.
There are but two material-things, towards the measuring of a piece of land, to be done in the field; the one is to measuine the lines, the other is to take the quantity of the angle eacia line makes with the meridian; then drawing meridian lines upon paper, which-represents the neadle of the instrument, and by the help of a protructor, which represents the instrument, we readily lay down the lines and angles in. such proportions as they are in the field.

To measure the lines there are several sorts of chains, as Mri Rathbrone's of two rods in length, containing 50 links ; others of one rod in length.-But that which is-the best to cast up the content of a field by, is Mr. Giunter's, which is 4 rods long, and contains 100 linke, each link being $7 \frac{52}{106}$ inches long. \therefore But this chain is too long to be used in uneven ground and thick woods. When thio is the case you may measure with a chain two rods in length, remembering when you put down the measure of the lines in your field book, that you set down but half of the chains and odd links, carrying 50 to the odd links for every ord chain ; as, if a line measured, by the t wo rod chain, 9 chains, 30 links; you must set down 4 chains, 80 links ; which will be the same as if you had measured by the 4 rod chain.

To tako the quantity of an angle each line makes with the meridians, there are many instruments ; as the planetable, semicircle,-theo dolite, circumferentor or compass, \&cc. To desc:ibe these to: you, with their several parts; is needless ; as one hour's use. of them will better deacribe them, than the reading of many. sheets of paper. The compass is most generally used in Amer. ica, to take the quantity of an angle, and is generally divided into qualrants, of 90 degrees, proceeding both. Ways from the nerth and south points:

Let the line N. S. represent a meridian or north and south line, and you are desirous to know what point. A is from N. Place your compass at ${ }^{N}$. with the forveradeluce to wards you; see that rhe top ofithia compass be level, and that the needle vibrates frees15: 2s scon as the?

[^2]1-

\qquad
\qquad

 weedle is-satled, which is here represeated by the line 'N. S .
direct your-sights to \mathbf{A}, and see what degree is cut by the south end of the needle, which let be 40 ; then is A, south 40 degreet east.

Now to measure the line N. A. or any other line, care must be taken that those who carry the chain do not deviate from a straight line, and that they make no mistake in the number of the chains.

Suppose the line N. A. to be 4 chains, 60 links; and the point, south 40 degrees east, and that the bound at A, be a rock: you must put it down in the following manner in yourfield book:

| Starion | Bearixgs. | Ch. Lin. | Bounds. | Upon rotiom
 bounded. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| N. | S. $40^{\circ} \mathrm{E}$. | 4,60 | A rock | Joseph Nye. |

[^3]The common method to survey a field, is to go round it, and find the bearings of every corner, and length of every line bet ween the corners, which are generally taken in rods and parts, unless the field be large.

To Plot a.fold from the foilorving feeld-book.

Stationt. A. B. C. D. E.	$\begin{aligned} & \text { Bearinge. } \\ & \text { N } 140 . \mathrm{EE} \\ & \text { S. } 720 \cdot \mathrm{~K} . \\ & \text { N. } 450 . \mathrm{E} . \\ & \text { S. } \\ & \text { N. } 67^{\circ} . \mathrm{W} \\ & \hline \end{aligned}$	Rode. 60 50 30 100 89	Beinnde. - B. C. D. E. to 1 st bounds.	On whim bounded

First draw 2

 line, as N S. to represent a meridian, or north and south line. Upon any convenient place on the line, maxe a giark as at A; upon which lay the meridian line ofthe protractor, (which should De grachated with twice 90 degrees, or in the same manner that the campass is gradua. ted,) to the meridian line on the paper, and against 14° make
which drave a line; then take 60 from which line you pleases, of equal paris, on the scale, and set off from. A to B; observ* ing io use the same line you begin with thro' the whole ploti: Through the mark of B, draw a mieridian parallel to the other $;$ turn your protractor the other way, because the line runs bnath, placing it on the meridian at B,and against 729 . make a mark, and proceed as before; serting of 50 rods from B to 8 ; do the. like by the other angles and lines, until you come round to theplace where yoll began:'

> To find the content of a Plot of lind.

In casting up the content of a piece of land measurea by the 4 rod chain, multiply the ebains and links by chains and links, asvuholenumbers; and from the product cut off five figures to find the acies ; then mulipis the 5 figures, cut off, by 4 ; from that product cut off fye figures, and the other will be roods ; then'multiply by 40 , cut off as before, and the remainder will be roda. $1 f$ the lengths be in rods, multiply them together, and divide by 160; the product will be acres; and the remainder rode.

GURTETING.

1. To medsure a square having equal sides.

Rule.
-Multiply the side of the square into itself, and the product will be the area.

Let A be a true square, each side measuring 10 chains: multiply 10 chains, 00 links, by 10 chains, 00 links, thus, 10,00 10,00
10)00000
the product is just 10 acres for the square,

2. To measare a Parallelogram; or long square. Rule.
Multiply the length by the breadth.
Let B represent a parallelogram, whose length is 20 chains, 50 links, and breadth 10 chains, 00 links.

$$
20,50
$$

10,00
20,50

Henes 20) $\overline{50000}$ Area 20 A. 2 Roods.
4
Ronds 2,00000

3. Tomeasure a Triangle.

Rule.
Multiply half the base by the whole perpendicular; or the \dot{w} hole base by half the perpendicular ; or multiply the whole base and whole perpendicular together,-and take half that product for the content. Either of these three ways will do.
The longest side of a triangle is usually called the base, except in a right angled triangle, where the longest of the two legs, which inglude the right angle, is called the base.
In the right-angled triangle, A B C, righit angled at B; the base $A: B 10$ chains; the perpeqidicular B C 13 chains, 70 links.

Perpendicular 1370
3 the ibase
500

The oblique-angled triarsle A B C, being given, let fall a perpendicular from the angle at B on the base A C, and the perpendicular is the height of the triangle. The base A C, being 30 rods, and the perpendicular B D 17 rods.

4. To measure a Trapezium, or fisure of four unequal sides, and uno equai angles.

Rule.

Draw a diagonal line from one of the angles to the opposite angle as A B, and then will the trapezium be divided into two triangles, of which the diagonal is the common base ; then letcing fall perpendiculars from the other opposite angles, on the diagonal, ada those perpendiculars together, and multiply half that sum into the diagonal, or half of the diagonal into the sum of the, perpendiculars, and tbrt product will be the area of the Trapezium.-In the Trapezium A C B D, the diagonal A B is 4 chains; 58 links, the perpendicular D E, 1 chain, ' 55 links, and the perpendicular C F, 2 chains, 23 links.

$\begin{aligned} & 1,55 \\ & 2,23 \end{aligned}$	Diagonal $\frac{\pi}{2}$ the sum of the perp. $=$	458 1.89
$\frac{1}{2} \div 78$		
1,89,		3664
		458
-		0)865 ¢2
	Srea 0 A. 3 R. $22 \frac{1}{2}$ rods.	3) 56.48
		40
	* Tomasa	2) 49920

Rule.

Divide the figure into triatiges, by drawing diagonals from one angle to another ; then measure all the tri ngles, by cither of the rules, already taught, and the $s: i m$ of their several areas will be the erea of the given fisure
In the triangle A F B. the base FA 26,5 rods, and the perpendicular B a 12,5 rods; in the triangle F B. E, the base BE 28 rods, and the perpendicular $\mathrm{F} d 13 r, \mathrm{ds}$. in the triangle $E \quad B \mathrm{D}$. the base $B E \neq 8$ rodis, and the perpermicular D c 16; in che triangle D C B, the base D C 22 rods, and the perpéndicular 3612 rods. See the zuork.

$$
\begin{aligned}
& 13,2.5=\frac{1}{2} \cdot \mathrm{AF} \text {. } \\
& 12,5=\text { per a } \mathrm{B} \text {. } \\
& 6625 \\
& \begin{array}{l}
2650 \\
1325
\end{array} \\
& 14=\frac{\pi}{2} \text { BE. } \\
& 18=\operatorname{per} \mathrm{F} d . \\
& 1325
\end{aligned}
$$

A. $F B=165.625$

FBE $=182$
E B D $=224$
DC $B=132$

160)703,625(4
 640

40;63(1
40

23

The figurecontains 4 A. 1 R. $2{ }^{2}{ }^{6}{ }^{6} \mathrm{roch}$. The number of triangles, in any irregular figure, wiub be
tess, by two, and the diagonals less, by three, than the nume. ber of the sides of the figure.

Io measure a circle and its parts.
In the annexed circle A:D BFG E, the arch line A D B F G E is called the periphery, the leingthof which is called the cir.cumference : Any line as A B, passing 'hro' the centre C, cits the circle into two equal parts', called semicircles, or half cir, cles, and such lines are called deame. ters, of the ciscle.

To find the con.
 tent of the whole circle, you must first know the length of the diameter, or the circumference ; one of which being known, the other is easily found ; for as 7 : is to 22 : : so is the diametet: to the circumference : and as 22 : is $107::$ iso is the circumference to the diameter.

In this annexed figure, the diameter A 3 is 2 duains or 200 links ; which, multiplied by 22 , and the product divided by 7 , gives 6 cb .28 lin and something more for the circumference Now, to find the supefficial content, multiply half the circumfen, rense by half the diasmeter, the product will be the content; haff the circumference is 3 ch .14 lin ; half the diameter. 1 ch .00 lin. $i \cdot$ which, multiplied together, the product is 3,1400 square Tinke, or 1 rood, 10 rods; the content of the circle.
Aci14-is so tho fand the contont ty the diameter only,
The squaide of the diameter is 40000 ; which multiplied by 11. makes 440000 ; which, divided by 14 , gives 31428 , or oine rood, 24 rods ${ }_{j}$ and something more.

Eifliply half the compass thereqt by the acmidiameter of the: circle ; the product will be the answer.
"In the foregbing, circle' I would know the content of that little piece DCB; the arch D B is 78,5 links; the fialf of it is 39,25 lin. i : which, multiplied by the semidiameter, 1 ch .00 lin. gives 3925 square links, or 6,25 rods.
To find the content of a segment of a circie, without knowing the diameter.
Let E F G, in the foregoing figure be the segment of a circle, the chord $E_{3} F$ is 1 ch. 70 lin or 170 lin .; the perpendicular G H, 50 links; now multiply $\frac{2}{3}$ of the one by the whole of the other, the product will be the content nearly ; the two-thirds of 170 is the nearest 113 , which, multiplied by 50 , produces 5650 square links, or 9 rods

7. To measure an Ellitris or Oonal.

Rule.

Multiply the two dametersof the oval together ; then;multiplying the prodyct by, 7854 , this last product will be the area of the oval:

In the annexed oval, ABCD, the transkerse diameter A C, is 34 feet, and the conjugate diam. eter, B D, is 24 ; to find the area.

34 24 136. 68 816 ,7854.

3264.

4080
6528.

5712
610,8864. Area 640,8864 feet:
Fti Plot and find the content. of a lot of land from the minutpo : field-brok.

First plot the field, by the foregoing rules ; then divide it innto triangles, and measure their bases and perpendiculars ; then work as follows.

Triangle A B G, Bate A G 54r.,
Half perp. B $h 15$

Half perp. E $m: 8.75$
E F G. Base•F G• 18 .

168 192.

210:00
810,
287,50
320,50 105,66

Half perp. E c 587
126 144
90
105,66
160) $1633,66\left(10\right.$ A. 0 R. $33 \frac{6}{10}$ rods, Area. 160

33
Note. You must always use the same line on the scale, to find the content, that you used in plotting.

TO LAY OUT LAND.
To lay out any number of acres in a square figure. Rule.
Annex to the number of acres given, 5 cyphers, which will turn the acres into links, extract the square root from the numnber thus increased, which will be the side of the proposed square.

It is required to lay out 100 acres in a square figure. I join to the 100 five cyphers, and then it is 100,00000 square links ; the root of which is 3162 nearest, or $\mathbf{5 1} \mathrm{ch} .62 \mathrm{ln}$. the length of one side of the square.
To lay out any number of acros in form of a Parailelogiram, wihereof one side is given:

Rtle.
First.turn the acres into links by annexing five cyphers ; divide that number by the given side, the quotient will be the other síde.

It is required to lay out 100 acres in a parallelogram, one side of which shall be 20 chains; to the " 100 I annex five cyphers, and it is 190,00000 , which divided by 20 chains, or 2000 links $\xi_{\text {. }}$ gives 50 chains for the other side of the parallelogramTo lay out any pumber of acres in form of a triangle. upon a-gtoon base.
Rule.
To doups the bumblex of acres, annex five cyphers, and divide by felbige, ede cioitent will be the fength of the perpendiculartequrea

It if required tholaj oun 100 acres in form of a triangle upona a givet bese, whooe length is " 40 chains.

To double the 100 acres, I aninex five cyphers, wrich maka 200.00000; which, divided by 40 , gives 50 cliains for the height of the perpendicular.

[^4] number of acres noquitivi.

Rule.
As 11 : is to 14 : : so is the number of acres given : to tho square of the diameter, of the circle, required.

It is required to day out 100 acres in form of a circle ; the length of the diameter is required.

Add five cyphers to the 100, and it makes 100,00000; then. as $11: 14:: 100,00000: 12727278$; the root of which in, 38 : ch. 67 or 68 lin. the diameter of the circle required.

OF DIVIDING LANDS.

To dieide a triangle reotral mays.
Suppose A B C contain 60 acres, to be divided between Awo men, one to have 40 acres cut off towards A, and the other 20 acres towards C; and the line of division to proceed from the angle B. First, measure-the base A C, viz. 50 chains; thea gay by the Rule of Three, if the whole content, 60 , give 50 chains for its base, What will 40 acres give?

Multiply amd cifide, the quowtint trill be 33 ch. 33 hith; whict. set off upon the base from A to D, and draw the 注e $B D_{\text {; }}$, which. shall divide the triangle as was required.

To dizoide.a triangle into any number of unequal patrits, by linces proe

The triangle A B C contains 60 acres'; to be divided bet ween 3 mon ; the first to have 15 actes, the second 20 , and the third 25 acres; the limes of ditision to proceeafiom 1 . Firtst theasute the base, whith is 50 ehains ; then as $60: 50:=15: 12$. ch. 50 lin. to be set off-from A to E, for the first man's base ${ }^{-}$
 F, tidh the yecond inat's base; then, censtequently, the thirs
 draw a linte from the point:absigsted, \mathbf{D}, th the opposite angle Bi and from Eand F draw the liverth H_{3}.F'G parmilat ta: R D. Lasily, trom 10 drth in the limer $\boldsymbol{D}-\mathbf{G}, \mathbf{D}$
 aptee into three : much A

5. \quad T
$T 3$ divide a fiece of land, in form of a Trianylt, oocordibs sta any prcportion stiven, by .o finc parallel to one of the oddes.
The triantle A B C contains 60 acres, the base A C is to chains. It is required to фivide it, by a line parallel to B C. into two parts; the one to conthin 40 acres, the oth. er 20.

Divide the base as be. A fore taught, and at the line
 of division fall in \mathbf{D}; A T being 33 chains, 33 links, and D $\mathcal{C} 16$ chaits, 67 links. Multiply the -whole base 50 by A D 33 chains, 33 links, the product is 1666,5000 , extract the square root, and it gives 40 chains, 88 links: set this off from A to E. From E draw E F paratlel te. BC; which divides the triangle as required.
 allelogrami
Rule.
Extract the square noot of the number of rods contained in the square; divide the number of rods, to be cut off By the root; the quotient will be the brearlth of the side to be taken off:

The square A B C D contains 34 A. 3 K. 20. rods; and it is requiped to cut off 8 A. 2 R. 35 rods.

The 34 A. 3 R. 20 rods reduced to rods, are 5580 , the squafe root of whith is $74,09 \mathrm{e}=$ quat to one side of: thie square. Thet the - 8 A. 8. R. 35 . rods, reditced to rods, are 1395: which divided by 74 69, give 18,6 rods, to be mot off
 from A to Ra a 2 and from D to F . Therr with the phunliclogram A EFD contain 8 Ain 8 8R. 355^{2} modo.
Tio divide a circle according' to ang proptortions-by a the conceatris: with mia frot.
The areas of circles are in proportion to one mother as thesquanes of their senidiamethers;- herefore if and dividdithe square of the semidiameter by the proportion givien, andiestendet. the square root, you will hare your desire. circle to be equalig di. vided between two man. The diameter thereof is 2 ehdins The semidarmeter 1 ch. or 100 links. The square thereof is 10000. Half thesquare is 5000 : The foot of the halt is 71 links, nearly; which take from your scale, and upon the.same centre describe the circle G E H F, which will divide the circle A is C Dintotwoequalparts.

TO MEASURE DISTANCES GFOMETTRICALLX
If you wert at A, and were desirous of knowing the distance from a to C; but by reason of a river or some other obstacle, you could not measure it, you might in the folluwing manner, oblain the true distance.

With a compass, or any other instrument uscd in taking aingles, plaṭed at A, observe what point\mathbf{C} bears from you, which let be S. $7 \mathrm{C}^{6} \mathrm{E}$. then turn your compass towards some other object, as B; note the bearing and distance, which let be S. 30 rods. Then remove your compass to H , and note the bearing to C , which let be $N .67^{\circ} \mathrm{E}$.

Now to find the distance, draw a lue A Bs representing a sơuth litie, and from any scale of equal parts, lay thereor 30 from A to B; then lay your protractor on the point at A, and: set off 73°, drawing a line from A through that point ; then lay youe protracior on the point at h, and set off 67%, drawing an-i other line intersecting the former ; the meeting of these two: liffos in C completel the triangle ; then takin the line in C in your compasses, and applying it to the same line of equal parisy. it will give the distance required, $45 \frac{1}{2}$ rads $: 4$

Nate ine groind bet ween your two stations, as A and" \bar{B}, shopld be teret!:

farly on lewel ground. At any convenient distance; as at C place your semicircle or sucb other instrument as you judge best for taKing an angle of altitude, as a:quadrant or the like ; observe that your semicircle be placed horizontally, by making a plummet-line fixed to the centre fall jus: upon 90%. Then move the index up and down, till you espy the top of the tree or building, thro' the sights ${ }^{-1}$ at A; see then what degree upon the limb is cut, by the index, as suppose 55°. Then measure the distance $\mathbf{C H}$, between your-instrument and the object ${ }^{2}$ which let be 30 feet.

B

Draw a line C B at pleasure; at Berect a perpendicular. From B set off 30 feet towards C, taken from any scale. Lay your protractor on the point at C , and against 55° make a mark, through which, and the point C, draw a line intersecting the perpendicular at A; then tuke the line A Bin your compasses and applying them to the same line on the scale, you will find the height of the object A B to be 45 feet, from the level of your instrument; to which add the height of your instrument from the ground, and you will have the height of the object.
To measure heights by a staff or rod.
.1. By the aid of a quadrant, a carpenter's, or mason's plumb, erect perpendicularly a staff of a given length, above the surface.

2 Having erected your staff, in a fair day, measure the length of its shadow, and also the length of the shadow of the object, whose height you wish to ascertain; and then you will haye all the requisites necessary for operation : Suppose

The length of the shadow of the staft, 15 ft .
The length of the staff, 10 ft .
The length of the shadow of the object, 135 ft .
By the Rule of Three, thus: As $15: 10:=185: 90$ the height of the object.

N: B. In all operations of this description; the person is supposed to stand on an horizontal plane ; otheryise his work will be erroneous:' On suich a plane, the perpendicular height of any object, may be taken, in a clear day.
To measure distances by the chain only; or by a cord equally divided into foet and inches.
By eith r of these instruments, may be measured the distanoe of an object on the opposife side of a river, pond, lake; or, the distance of any visible, inaccessible object, on the earth.

Operation.

Erect a staff, or any object, at the
waters edge, as B. Move directly. backwards, two or more rods to C, 8o that C and B may make a right line with the object A, on the other side of the river. On the brink of the river lay off three, or more rods, to E . Then complete your parallelogram; whether it be a square, or zhombus, or rhomboides, is immaterial. Take your station at D, cause an object to be erected at the water's edge, as at F, in the direction of A, on the opposite side of the river. Measure the distance, in rods, or feet, or inches, from E. to F. Measure also the distance from D to F , and from D. to E. Note your meas. urements on paper, or slate. The distance from F to B is also known. E Then say. as EF:E D:: EB:BA.

Suppose the distance

	ch.	L.
E. F.	2	30
E.	D.	5
F. B.	80	

ch L.
As 2,30: 5,20:: $8,50: 1876$ the breadth of the river:
i. B. This measurement is founded on the geometricaltheorems. that, if in two triangles, all the angles of one be each respecte ively equal to all the angles of the other ; then the legs opposite to the equal angles will be proportional.
Mis.plain, that the sum of all the angles, in the less triangle, $\mathbf{D}, \mathbf{F}, \boldsymbol{F}$, is equal to the sum of all the angles in the greatef: A, B, F. And of course there must be a proportion between: their respective legs And, consequenty, by ascertaining the leng't of the base and perpendicular of the less triangle; and also the base of the greater triangle, you mas easily find the perpenclicular of the greater triangle, which is the breadth of the river. . This is done by the Rule of Thiree Direct.

The above principles account for the measurement of hejghts? ly, a staff and shadeurs.

Of the linie of numbers on Gunter's Scate.
On Gunter's scale there is a line, marked at the right hand, sikm. which is divided. The marks of the lapge division being: numbered from left to right, the marks of the smaller division: itundediately below the preceding, not numbered.
TYo prove the line by compascep, obnerve that the distanceMoio I to 2 , is equalite the distance from 2 to. Af and fremince- 8.0 .

Y is equal to the distance from 4 to 8 ; and from 4 to 8 is equal

 to the dirtitice from 3 te 6 .TH. find a'number on the line, as suppose 134.
Forthe 1 Hundred, account one on the line; and for 3 , take- 3 of the lurge divisions; and for 4, take 4 of the smaller divisions, and that' is the point. 'To find 750, for 7, take 7 on the line; for
 a 'ftell himbers"ad. 12 ;'for 10 take one as before, and for 2 , take .2 ixtherideritisions, and that is the point.

Hizixiplacation by Gunter's lone.
To mintifily 3^{3} by 7. set one trot of the compasses on 1, in the left hand line, and extend the other to 3 , to wards the right hand, and with the same extent place one foot in 7 , and the other foot will fall on 21 in the right hand line, whech is the answer. Division by Gunter's link.
To divide 63 by 3 extend from 3 to 1 , towards the left hand, and that extent will reach the same way from 63 to 21 , the an-- *iver.

Noté.-To muktiply joú minst extend your compasses fiomí 1, towards the right land; and to divide you must extendthem to the left hand.'.

2 Divide 350 by 25 ; extend from 25 to 1, towards the left hand; and that extent will reach the same way from 350 to 14, the quotient.

Rule of Three Direct.

1. If 4 bushels of oats cost 9 shillings, What will 36 bushels cost !-Extend from 4 to 9 , towards the right hand, andithat extent will reach the same way from 36 to 81, the ans wer in slillings.
2. If 5 jaids of cloth cost 10 s .6 d . What will soyards cost ? Extend from 5 to $10 \frac{1}{2}$: towards the right hamd, and that extent the same way will repch from 30 to 63 , the answer.

To Measure Boards.

1. If a board be 9 inches wide, and 18 feet long, What is the "content in mperficial square feet ?-Extend froma 12, (the centre of foot measure) to 9 , towards the left hand, and that extent the same way will reach from 18 to $13 \frac{1}{2}$, the answer.

To Measure Tionber by Gunter' Line.
A piece of timber 20 inches square and 9 feet long, What is the content in solid feet:-Exiend from 12, the centre, to 20 , to wards the right hand, and that extent twice the same way will reach from 9 to 25 feet, the content.

TO:MEASURE A SPHERE OR GLOBE.

A Sphere or Gobe, is a round solid body, in the middle of which is a point, from which all lines drawn from the surface -are equal.

Rule.
M Aply the ctibe of the diameter by ,5236, and the product will be.the solid content.

The diameter of a Globe, A B, is 12; to find the solid content.
12
12
144
12
$1728=$ the cube of the diameter. ,5236

10368

5184
3456
8040

904,7808 solid content.

Note.-When the solidity of a Globe is given, the diameter may be found by dividing the solidity by ,5236, and extracting the cube root of the quotient.

To measure the solidity of a Frustrum or Segment of a Giober:
The frustrum of a Globe, is any part cut off ty a plane.

Rule.

To three times the square of the semidiameter, of the base, add the square of the height; then muliply that sum by the height, and the product by, 5236 , you will have the solid content: Let A D C represest a coal-pit; the height at the chimney, B D, 9 feet; the diameter, A C, 24 feet; to find how many cords of wood it contains, making no allowance for the chimney.

[^0]: † The questions with this enark are to exerciee the learner, the qus. dient being anpointed.

[^1]: - By anding cophert to theremunindert, praducee the cente and

[^2]:[^3]: - It frequently happens, in surveying, that you camot see from one bound to the other, by reason of the uneventess of the ground or woods. When this happens, if you can at any place. directly between the bounds discover both, jou may, by look; ing through the sights both ways, move your compass until you get it in a direct line, and then take the bearing. Or you may Clirect your sights to some object which jou think is the nearest in course to the bound, observing that those who carry the chain follow-in a direct line to that object, and if it be distant as far as the bound, and if you bappen to run one rod from the bounds, and the line be 60 rods; you must allow one degree ; for one degree will gain a rod in about 60 ; and so in proportion for a longer or shorter line, or greater or less distance from the bound. But the following nethod is, by some, preferred to the last ; as, surppose it be required to run a line from A to B, but being uncertain whereabouts B is : to find it, I run N. $400 \mathrm{~W}, 60$ rods, to C ; from thence I observe B to bear from me $\mathrm{N} .13^{\circ} \mathrm{E}$. 36 rods; now to find the-true course from. A to B, Iput down the bearings and lengtli of line from A to C, and from C to B, then I draw the line.A B; then apply the protractor to the point at A, and find the true course to be N. 200 W . and by taking tle line $\mathrm{A} B$, in the compasses, and applying it to the same scale the dther lines were taken from, 1 find the length to be 85 rods. So I find that B is N. 20° W. 85 rods.

[^4]: | . |
 | :--- |
 | - |

